| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑥  =  ∅  →  ( 𝐴  ↑o  𝑥 )  =  ( 𝐴  ↑o  ∅ ) ) | 
						
							| 2 | 1 | eleq2d | ⊢ ( 𝑥  =  ∅  →  ( ∅  ∈  ( 𝐴  ↑o  𝑥 )  ↔  ∅  ∈  ( 𝐴  ↑o  ∅ ) ) ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ↑o  𝑥 )  =  ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 4 | 3 | eleq2d | ⊢ ( 𝑥  =  𝑦  →  ( ∅  ∈  ( 𝐴  ↑o  𝑥 )  ↔  ∅  ∈  ( 𝐴  ↑o  𝑦 ) ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝐴  ↑o  𝑥 )  =  ( 𝐴  ↑o  suc  𝑦 ) ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( 𝑥  =  suc  𝑦  →  ( ∅  ∈  ( 𝐴  ↑o  𝑥 )  ↔  ∅  ∈  ( 𝐴  ↑o  suc  𝑦 ) ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴  ↑o  𝑥 )  =  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 8 | 7 | eleq2d | ⊢ ( 𝑥  =  𝐵  →  ( ∅  ∈  ( 𝐴  ↑o  𝑥 )  ↔  ∅  ∈  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 9 |  | 0lt1o | ⊢ ∅  ∈  1o | 
						
							| 10 |  | oe0 | ⊢ ( 𝐴  ∈  On  →  ( 𝐴  ↑o  ∅ )  =  1o ) | 
						
							| 11 | 9 10 | eleqtrrid | ⊢ ( 𝐴  ∈  On  →  ∅  ∈  ( 𝐴  ↑o  ∅ ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 )  →  ∅  ∈  ( 𝐴  ↑o  ∅ ) ) | 
						
							| 13 |  | oecl | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐴  ↑o  𝑦 )  ∈  On ) | 
						
							| 14 |  | omordi | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐴  ↑o  𝑦 )  ∈  On )  ∧  ∅  ∈  ( 𝐴  ↑o  𝑦 ) )  →  ( ∅  ∈  𝐴  →  ( ( 𝐴  ↑o  𝑦 )  ·o  ∅ )  ∈  ( ( 𝐴  ↑o  𝑦 )  ·o  𝐴 ) ) ) | 
						
							| 15 |  | om0 | ⊢ ( ( 𝐴  ↑o  𝑦 )  ∈  On  →  ( ( 𝐴  ↑o  𝑦 )  ·o  ∅ )  =  ∅ ) | 
						
							| 16 | 15 | eleq1d | ⊢ ( ( 𝐴  ↑o  𝑦 )  ∈  On  →  ( ( ( 𝐴  ↑o  𝑦 )  ·o  ∅ )  ∈  ( ( 𝐴  ↑o  𝑦 )  ·o  𝐴 )  ↔  ∅  ∈  ( ( 𝐴  ↑o  𝑦 )  ·o  𝐴 ) ) ) | 
						
							| 17 | 16 | ad2antlr | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐴  ↑o  𝑦 )  ∈  On )  ∧  ∅  ∈  ( 𝐴  ↑o  𝑦 ) )  →  ( ( ( 𝐴  ↑o  𝑦 )  ·o  ∅ )  ∈  ( ( 𝐴  ↑o  𝑦 )  ·o  𝐴 )  ↔  ∅  ∈  ( ( 𝐴  ↑o  𝑦 )  ·o  𝐴 ) ) ) | 
						
							| 18 | 14 17 | sylibd | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐴  ↑o  𝑦 )  ∈  On )  ∧  ∅  ∈  ( 𝐴  ↑o  𝑦 ) )  →  ( ∅  ∈  𝐴  →  ∅  ∈  ( ( 𝐴  ↑o  𝑦 )  ·o  𝐴 ) ) ) | 
						
							| 19 | 13 18 | syldanl | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝑦  ∈  On )  ∧  ∅  ∈  ( 𝐴  ↑o  𝑦 ) )  →  ( ∅  ∈  𝐴  →  ∅  ∈  ( ( 𝐴  ↑o  𝑦 )  ·o  𝐴 ) ) ) | 
						
							| 20 |  | oesuc | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐴  ↑o  suc  𝑦 )  =  ( ( 𝐴  ↑o  𝑦 )  ·o  𝐴 ) ) | 
						
							| 21 | 20 | eleq2d | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ∈  On )  →  ( ∅  ∈  ( 𝐴  ↑o  suc  𝑦 )  ↔  ∅  ∈  ( ( 𝐴  ↑o  𝑦 )  ·o  𝐴 ) ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝑦  ∈  On )  ∧  ∅  ∈  ( 𝐴  ↑o  𝑦 ) )  →  ( ∅  ∈  ( 𝐴  ↑o  suc  𝑦 )  ↔  ∅  ∈  ( ( 𝐴  ↑o  𝑦 )  ·o  𝐴 ) ) ) | 
						
							| 23 | 19 22 | sylibrd | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝑦  ∈  On )  ∧  ∅  ∈  ( 𝐴  ↑o  𝑦 ) )  →  ( ∅  ∈  𝐴  →  ∅  ∈  ( 𝐴  ↑o  suc  𝑦 ) ) ) | 
						
							| 24 | 23 | exp31 | ⊢ ( 𝐴  ∈  On  →  ( 𝑦  ∈  On  →  ( ∅  ∈  ( 𝐴  ↑o  𝑦 )  →  ( ∅  ∈  𝐴  →  ∅  ∈  ( 𝐴  ↑o  suc  𝑦 ) ) ) ) ) | 
						
							| 25 | 24 | com12 | ⊢ ( 𝑦  ∈  On  →  ( 𝐴  ∈  On  →  ( ∅  ∈  ( 𝐴  ↑o  𝑦 )  →  ( ∅  ∈  𝐴  →  ∅  ∈  ( 𝐴  ↑o  suc  𝑦 ) ) ) ) ) | 
						
							| 26 | 25 | com34 | ⊢ ( 𝑦  ∈  On  →  ( 𝐴  ∈  On  →  ( ∅  ∈  𝐴  →  ( ∅  ∈  ( 𝐴  ↑o  𝑦 )  →  ∅  ∈  ( 𝐴  ↑o  suc  𝑦 ) ) ) ) ) | 
						
							| 27 | 26 | impd | ⊢ ( 𝑦  ∈  On  →  ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 )  →  ( ∅  ∈  ( 𝐴  ↑o  𝑦 )  →  ∅  ∈  ( 𝐴  ↑o  suc  𝑦 ) ) ) ) | 
						
							| 28 |  | 0ellim | ⊢ ( Lim  𝑥  →  ∅  ∈  𝑥 ) | 
						
							| 29 |  | eqimss2 | ⊢ ( ( 𝐴  ↑o  ∅ )  =  1o  →  1o  ⊆  ( 𝐴  ↑o  ∅ ) ) | 
						
							| 30 | 10 29 | syl | ⊢ ( 𝐴  ∈  On  →  1o  ⊆  ( 𝐴  ↑o  ∅ ) ) | 
						
							| 31 |  | oveq2 | ⊢ ( 𝑦  =  ∅  →  ( 𝐴  ↑o  𝑦 )  =  ( 𝐴  ↑o  ∅ ) ) | 
						
							| 32 | 31 | sseq2d | ⊢ ( 𝑦  =  ∅  →  ( 1o  ⊆  ( 𝐴  ↑o  𝑦 )  ↔  1o  ⊆  ( 𝐴  ↑o  ∅ ) ) ) | 
						
							| 33 | 32 | rspcev | ⊢ ( ( ∅  ∈  𝑥  ∧  1o  ⊆  ( 𝐴  ↑o  ∅ ) )  →  ∃ 𝑦  ∈  𝑥 1o  ⊆  ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 34 | 28 30 33 | syl2an | ⊢ ( ( Lim  𝑥  ∧  𝐴  ∈  On )  →  ∃ 𝑦  ∈  𝑥 1o  ⊆  ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 35 |  | ssiun | ⊢ ( ∃ 𝑦  ∈  𝑥 1o  ⊆  ( 𝐴  ↑o  𝑦 )  →  1o  ⊆  ∪  𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 36 | 34 35 | syl | ⊢ ( ( Lim  𝑥  ∧  𝐴  ∈  On )  →  1o  ⊆  ∪  𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 37 | 36 | adantrr | ⊢ ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) )  →  1o  ⊆  ∪  𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 38 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 39 |  | oelim | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝑥  ∈  V  ∧  Lim  𝑥 ) )  ∧  ∅  ∈  𝐴 )  →  ( 𝐴  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 40 | 38 39 | mpanlr1 | ⊢ ( ( ( 𝐴  ∈  On  ∧  Lim  𝑥 )  ∧  ∅  ∈  𝐴 )  →  ( 𝐴  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 41 | 40 | anasss | ⊢ ( ( 𝐴  ∈  On  ∧  ( Lim  𝑥  ∧  ∅  ∈  𝐴 ) )  →  ( 𝐴  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 42 | 41 | an12s | ⊢ ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) )  →  ( 𝐴  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 43 | 37 42 | sseqtrrd | ⊢ ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) )  →  1o  ⊆  ( 𝐴  ↑o  𝑥 ) ) | 
						
							| 44 |  | limelon | ⊢ ( ( 𝑥  ∈  V  ∧  Lim  𝑥 )  →  𝑥  ∈  On ) | 
						
							| 45 | 38 44 | mpan | ⊢ ( Lim  𝑥  →  𝑥  ∈  On ) | 
						
							| 46 |  | oecl | ⊢ ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  →  ( 𝐴  ↑o  𝑥 )  ∈  On ) | 
						
							| 47 | 46 | ancoms | ⊢ ( ( 𝑥  ∈  On  ∧  𝐴  ∈  On )  →  ( 𝐴  ↑o  𝑥 )  ∈  On ) | 
						
							| 48 | 45 47 | sylan | ⊢ ( ( Lim  𝑥  ∧  𝐴  ∈  On )  →  ( 𝐴  ↑o  𝑥 )  ∈  On ) | 
						
							| 49 |  | eloni | ⊢ ( ( 𝐴  ↑o  𝑥 )  ∈  On  →  Ord  ( 𝐴  ↑o  𝑥 ) ) | 
						
							| 50 |  | ordgt0ge1 | ⊢ ( Ord  ( 𝐴  ↑o  𝑥 )  →  ( ∅  ∈  ( 𝐴  ↑o  𝑥 )  ↔  1o  ⊆  ( 𝐴  ↑o  𝑥 ) ) ) | 
						
							| 51 | 48 49 50 | 3syl | ⊢ ( ( Lim  𝑥  ∧  𝐴  ∈  On )  →  ( ∅  ∈  ( 𝐴  ↑o  𝑥 )  ↔  1o  ⊆  ( 𝐴  ↑o  𝑥 ) ) ) | 
						
							| 52 | 51 | adantrr | ⊢ ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) )  →  ( ∅  ∈  ( 𝐴  ↑o  𝑥 )  ↔  1o  ⊆  ( 𝐴  ↑o  𝑥 ) ) ) | 
						
							| 53 | 43 52 | mpbird | ⊢ ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) )  →  ∅  ∈  ( 𝐴  ↑o  𝑥 ) ) | 
						
							| 54 | 53 | ex | ⊢ ( Lim  𝑥  →  ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 )  →  ∅  ∈  ( 𝐴  ↑o  𝑥 ) ) ) | 
						
							| 55 | 54 | a1dd | ⊢ ( Lim  𝑥  →  ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 )  →  ( ∀ 𝑦  ∈  𝑥 ∅  ∈  ( 𝐴  ↑o  𝑦 )  →  ∅  ∈  ( 𝐴  ↑o  𝑥 ) ) ) ) | 
						
							| 56 | 2 4 6 8 12 27 55 | tfinds3 | ⊢ ( 𝐵  ∈  On  →  ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 )  →  ∅  ∈  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 57 | 56 | expd | ⊢ ( 𝐵  ∈  On  →  ( 𝐴  ∈  On  →  ( ∅  ∈  𝐴  →  ∅  ∈  ( 𝐴  ↑o  𝐵 ) ) ) ) | 
						
							| 58 | 57 | com12 | ⊢ ( 𝐴  ∈  On  →  ( 𝐵  ∈  On  →  ( ∅  ∈  𝐴  →  ∅  ∈  ( 𝐴  ↑o  𝐵 ) ) ) ) | 
						
							| 59 | 58 | imp31 | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ∅  ∈  ( 𝐴  ↑o  𝐵 ) ) |