| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oa00 | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( 𝐵  +o  𝐶 )  =  ∅  ↔  ( 𝐵  =  ∅  ∧  𝐶  =  ∅ ) ) ) | 
						
							| 2 | 1 | biimpar | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ( 𝐵  =  ∅  ∧  𝐶  =  ∅ ) )  →  ( 𝐵  +o  𝐶 )  =  ∅ ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ( 𝐵  =  ∅  ∧  𝐶  =  ∅ ) )  →  ( ∅  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ∅  ↑o  ∅ ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝐵  =  ∅  →  ( ∅  ↑o  𝐵 )  =  ( ∅  ↑o  ∅ ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝐶  =  ∅  →  ( ∅  ↑o  𝐶 )  =  ( ∅  ↑o  ∅ ) ) | 
						
							| 6 |  | oe0m0 | ⊢ ( ∅  ↑o  ∅ )  =  1o | 
						
							| 7 | 5 6 | eqtrdi | ⊢ ( 𝐶  =  ∅  →  ( ∅  ↑o  𝐶 )  =  1o ) | 
						
							| 8 | 4 7 | oveqan12d | ⊢ ( ( 𝐵  =  ∅  ∧  𝐶  =  ∅ )  →  ( ( ∅  ↑o  𝐵 )  ·o  ( ∅  ↑o  𝐶 ) )  =  ( ( ∅  ↑o  ∅ )  ·o  1o ) ) | 
						
							| 9 |  | 0elon | ⊢ ∅  ∈  On | 
						
							| 10 |  | oecl | ⊢ ( ( ∅  ∈  On  ∧  ∅  ∈  On )  →  ( ∅  ↑o  ∅ )  ∈  On ) | 
						
							| 11 | 9 9 10 | mp2an | ⊢ ( ∅  ↑o  ∅ )  ∈  On | 
						
							| 12 |  | om1 | ⊢ ( ( ∅  ↑o  ∅ )  ∈  On  →  ( ( ∅  ↑o  ∅ )  ·o  1o )  =  ( ∅  ↑o  ∅ ) ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ ( ( ∅  ↑o  ∅ )  ·o  1o )  =  ( ∅  ↑o  ∅ ) | 
						
							| 14 | 8 13 | eqtrdi | ⊢ ( ( 𝐵  =  ∅  ∧  𝐶  =  ∅ )  →  ( ( ∅  ↑o  𝐵 )  ·o  ( ∅  ↑o  𝐶 ) )  =  ( ∅  ↑o  ∅ ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ( 𝐵  =  ∅  ∧  𝐶  =  ∅ ) )  →  ( ( ∅  ↑o  𝐵 )  ·o  ( ∅  ↑o  𝐶 ) )  =  ( ∅  ↑o  ∅ ) ) | 
						
							| 16 | 3 15 | eqtr4d | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ( 𝐵  =  ∅  ∧  𝐶  =  ∅ ) )  →  ( ∅  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ( ∅  ↑o  𝐵 )  ·o  ( ∅  ↑o  𝐶 ) ) ) | 
						
							| 17 |  | oacl | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐵  +o  𝐶 )  ∈  On ) | 
						
							| 18 |  | on0eln0 | ⊢ ( ( 𝐵  +o  𝐶 )  ∈  On  →  ( ∅  ∈  ( 𝐵  +o  𝐶 )  ↔  ( 𝐵  +o  𝐶 )  ≠  ∅ ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ∅  ∈  ( 𝐵  +o  𝐶 )  ↔  ( 𝐵  +o  𝐶 )  ≠  ∅ ) ) | 
						
							| 20 |  | oe0m1 | ⊢ ( ( 𝐵  +o  𝐶 )  ∈  On  →  ( ∅  ∈  ( 𝐵  +o  𝐶 )  ↔  ( ∅  ↑o  ( 𝐵  +o  𝐶 ) )  =  ∅ ) ) | 
						
							| 21 | 17 20 | syl | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ∅  ∈  ( 𝐵  +o  𝐶 )  ↔  ( ∅  ↑o  ( 𝐵  +o  𝐶 ) )  =  ∅ ) ) | 
						
							| 22 | 1 | necon3abid | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( 𝐵  +o  𝐶 )  ≠  ∅  ↔  ¬  ( 𝐵  =  ∅  ∧  𝐶  =  ∅ ) ) ) | 
						
							| 23 | 19 21 22 | 3bitr3d | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( ∅  ↑o  ( 𝐵  +o  𝐶 ) )  =  ∅  ↔  ¬  ( 𝐵  =  ∅  ∧  𝐶  =  ∅ ) ) ) | 
						
							| 24 | 23 | biimpar | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ¬  ( 𝐵  =  ∅  ∧  𝐶  =  ∅ ) )  →  ( ∅  ↑o  ( 𝐵  +o  𝐶 ) )  =  ∅ ) | 
						
							| 25 |  | on0eln0 | ⊢ ( 𝐵  ∈  On  →  ( ∅  ∈  𝐵  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ∅  ∈  𝐵  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 27 |  | on0eln0 | ⊢ ( 𝐶  ∈  On  →  ( ∅  ∈  𝐶  ↔  𝐶  ≠  ∅ ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ∅  ∈  𝐶  ↔  𝐶  ≠  ∅ ) ) | 
						
							| 29 | 26 28 | orbi12d | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( ∅  ∈  𝐵  ∨  ∅  ∈  𝐶 )  ↔  ( 𝐵  ≠  ∅  ∨  𝐶  ≠  ∅ ) ) ) | 
						
							| 30 |  | neorian | ⊢ ( ( 𝐵  ≠  ∅  ∨  𝐶  ≠  ∅ )  ↔  ¬  ( 𝐵  =  ∅  ∧  𝐶  =  ∅ ) ) | 
						
							| 31 | 29 30 | bitrdi | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( ∅  ∈  𝐵  ∨  ∅  ∈  𝐶 )  ↔  ¬  ( 𝐵  =  ∅  ∧  𝐶  =  ∅ ) ) ) | 
						
							| 32 |  | oe0m1 | ⊢ ( 𝐵  ∈  On  →  ( ∅  ∈  𝐵  ↔  ( ∅  ↑o  𝐵 )  =  ∅ ) ) | 
						
							| 33 | 32 | biimpa | ⊢ ( ( 𝐵  ∈  On  ∧  ∅  ∈  𝐵 )  →  ( ∅  ↑o  𝐵 )  =  ∅ ) | 
						
							| 34 | 33 | oveq1d | ⊢ ( ( 𝐵  ∈  On  ∧  ∅  ∈  𝐵 )  →  ( ( ∅  ↑o  𝐵 )  ·o  ( ∅  ↑o  𝐶 ) )  =  ( ∅  ·o  ( ∅  ↑o  𝐶 ) ) ) | 
						
							| 35 |  | oecl | ⊢ ( ( ∅  ∈  On  ∧  𝐶  ∈  On )  →  ( ∅  ↑o  𝐶 )  ∈  On ) | 
						
							| 36 | 9 35 | mpan | ⊢ ( 𝐶  ∈  On  →  ( ∅  ↑o  𝐶 )  ∈  On ) | 
						
							| 37 |  | om0r | ⊢ ( ( ∅  ↑o  𝐶 )  ∈  On  →  ( ∅  ·o  ( ∅  ↑o  𝐶 ) )  =  ∅ ) | 
						
							| 38 | 36 37 | syl | ⊢ ( 𝐶  ∈  On  →  ( ∅  ·o  ( ∅  ↑o  𝐶 ) )  =  ∅ ) | 
						
							| 39 | 34 38 | sylan9eq | ⊢ ( ( ( 𝐵  ∈  On  ∧  ∅  ∈  𝐵 )  ∧  𝐶  ∈  On )  →  ( ( ∅  ↑o  𝐵 )  ·o  ( ∅  ↑o  𝐶 ) )  =  ∅ ) | 
						
							| 40 | 39 | an32s | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ∅  ∈  𝐵 )  →  ( ( ∅  ↑o  𝐵 )  ·o  ( ∅  ↑o  𝐶 ) )  =  ∅ ) | 
						
							| 41 |  | oe0m1 | ⊢ ( 𝐶  ∈  On  →  ( ∅  ∈  𝐶  ↔  ( ∅  ↑o  𝐶 )  =  ∅ ) ) | 
						
							| 42 | 41 | biimpa | ⊢ ( ( 𝐶  ∈  On  ∧  ∅  ∈  𝐶 )  →  ( ∅  ↑o  𝐶 )  =  ∅ ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( ( 𝐶  ∈  On  ∧  ∅  ∈  𝐶 )  →  ( ( ∅  ↑o  𝐵 )  ·o  ( ∅  ↑o  𝐶 ) )  =  ( ( ∅  ↑o  𝐵 )  ·o  ∅ ) ) | 
						
							| 44 |  | oecl | ⊢ ( ( ∅  ∈  On  ∧  𝐵  ∈  On )  →  ( ∅  ↑o  𝐵 )  ∈  On ) | 
						
							| 45 | 9 44 | mpan | ⊢ ( 𝐵  ∈  On  →  ( ∅  ↑o  𝐵 )  ∈  On ) | 
						
							| 46 |  | om0 | ⊢ ( ( ∅  ↑o  𝐵 )  ∈  On  →  ( ( ∅  ↑o  𝐵 )  ·o  ∅ )  =  ∅ ) | 
						
							| 47 | 45 46 | syl | ⊢ ( 𝐵  ∈  On  →  ( ( ∅  ↑o  𝐵 )  ·o  ∅ )  =  ∅ ) | 
						
							| 48 | 43 47 | sylan9eqr | ⊢ ( ( 𝐵  ∈  On  ∧  ( 𝐶  ∈  On  ∧  ∅  ∈  𝐶 ) )  →  ( ( ∅  ↑o  𝐵 )  ·o  ( ∅  ↑o  𝐶 ) )  =  ∅ ) | 
						
							| 49 | 48 | anassrs | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ∅  ∈  𝐶 )  →  ( ( ∅  ↑o  𝐵 )  ·o  ( ∅  ↑o  𝐶 ) )  =  ∅ ) | 
						
							| 50 | 40 49 | jaodan | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ( ∅  ∈  𝐵  ∨  ∅  ∈  𝐶 ) )  →  ( ( ∅  ↑o  𝐵 )  ·o  ( ∅  ↑o  𝐶 ) )  =  ∅ ) | 
						
							| 51 | 50 | ex | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( ∅  ∈  𝐵  ∨  ∅  ∈  𝐶 )  →  ( ( ∅  ↑o  𝐵 )  ·o  ( ∅  ↑o  𝐶 ) )  =  ∅ ) ) | 
						
							| 52 | 31 51 | sylbird | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ¬  ( 𝐵  =  ∅  ∧  𝐶  =  ∅ )  →  ( ( ∅  ↑o  𝐵 )  ·o  ( ∅  ↑o  𝐶 ) )  =  ∅ ) ) | 
						
							| 53 | 52 | imp | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ¬  ( 𝐵  =  ∅  ∧  𝐶  =  ∅ ) )  →  ( ( ∅  ↑o  𝐵 )  ·o  ( ∅  ↑o  𝐶 ) )  =  ∅ ) | 
						
							| 54 | 24 53 | eqtr4d | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ¬  ( 𝐵  =  ∅  ∧  𝐶  =  ∅ ) )  →  ( ∅  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ( ∅  ↑o  𝐵 )  ·o  ( ∅  ↑o  𝐶 ) ) ) | 
						
							| 55 | 16 54 | pm2.61dan | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ∅  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ( ∅  ↑o  𝐵 )  ·o  ( ∅  ↑o  𝐶 ) ) ) | 
						
							| 56 |  | oveq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ∅  ↑o  ( 𝐵  +o  𝐶 ) ) ) | 
						
							| 57 |  | oveq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ↑o  𝐵 )  =  ( ∅  ↑o  𝐵 ) ) | 
						
							| 58 |  | oveq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ↑o  𝐶 )  =  ( ∅  ↑o  𝐶 ) ) | 
						
							| 59 | 57 58 | oveq12d | ⊢ ( 𝐴  =  ∅  →  ( ( 𝐴  ↑o  𝐵 )  ·o  ( 𝐴  ↑o  𝐶 ) )  =  ( ( ∅  ↑o  𝐵 )  ·o  ( ∅  ↑o  𝐶 ) ) ) | 
						
							| 60 | 56 59 | eqeq12d | ⊢ ( 𝐴  =  ∅  →  ( ( 𝐴  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ( 𝐴  ↑o  𝐵 )  ·o  ( 𝐴  ↑o  𝐶 ) )  ↔  ( ∅  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ( ∅  ↑o  𝐵 )  ·o  ( ∅  ↑o  𝐶 ) ) ) ) | 
						
							| 61 | 55 60 | imbitrrid | ⊢ ( 𝐴  =  ∅  →  ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐴  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ( 𝐴  ↑o  𝐵 )  ·o  ( 𝐴  ↑o  𝐶 ) ) ) ) | 
						
							| 62 | 61 | impcom | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝐴  =  ∅ )  →  ( 𝐴  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ( 𝐴  ↑o  𝐵 )  ·o  ( 𝐴  ↑o  𝐶 ) ) ) | 
						
							| 63 |  | oveq1 | ⊢ ( 𝐴  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( 𝐴  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  ( 𝐵  +o  𝐶 ) ) ) | 
						
							| 64 |  | oveq1 | ⊢ ( 𝐴  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( 𝐴  ↑o  𝐵 )  =  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐵 ) ) | 
						
							| 65 |  | oveq1 | ⊢ ( 𝐴  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( 𝐴  ↑o  𝐶 )  =  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐶 ) ) | 
						
							| 66 | 64 65 | oveq12d | ⊢ ( 𝐴  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( ( 𝐴  ↑o  𝐵 )  ·o  ( 𝐴  ↑o  𝐶 ) )  =  ( ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐵 )  ·o  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐶 ) ) ) | 
						
							| 67 | 63 66 | eqeq12d | ⊢ ( 𝐴  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( ( 𝐴  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ( 𝐴  ↑o  𝐵 )  ·o  ( 𝐴  ↑o  𝐶 ) )  ↔  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐵 )  ·o  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐶 ) ) ) ) | 
						
							| 68 | 67 | imbi2d | ⊢ ( 𝐴  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( ( 𝐶  ∈  On  →  ( 𝐴  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ( 𝐴  ↑o  𝐵 )  ·o  ( 𝐴  ↑o  𝐶 ) ) )  ↔  ( 𝐶  ∈  On  →  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐵 )  ·o  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐶 ) ) ) ) ) | 
						
							| 69 |  | oveq1 | ⊢ ( 𝐵  =  if ( 𝐵  ∈  On ,  𝐵 ,  1o )  →  ( 𝐵  +o  𝐶 )  =  ( if ( 𝐵  ∈  On ,  𝐵 ,  1o )  +o  𝐶 ) ) | 
						
							| 70 | 69 | oveq2d | ⊢ ( 𝐵  =  if ( 𝐵  ∈  On ,  𝐵 ,  1o )  →  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  ( if ( 𝐵  ∈  On ,  𝐵 ,  1o )  +o  𝐶 ) ) ) | 
						
							| 71 |  | oveq2 | ⊢ ( 𝐵  =  if ( 𝐵  ∈  On ,  𝐵 ,  1o )  →  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐵 )  =  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  if ( 𝐵  ∈  On ,  𝐵 ,  1o ) ) ) | 
						
							| 72 | 71 | oveq1d | ⊢ ( 𝐵  =  if ( 𝐵  ∈  On ,  𝐵 ,  1o )  →  ( ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐵 )  ·o  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐶 ) )  =  ( ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  if ( 𝐵  ∈  On ,  𝐵 ,  1o ) )  ·o  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐶 ) ) ) | 
						
							| 73 | 70 72 | eqeq12d | ⊢ ( 𝐵  =  if ( 𝐵  ∈  On ,  𝐵 ,  1o )  →  ( ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐵 )  ·o  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐶 ) )  ↔  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  ( if ( 𝐵  ∈  On ,  𝐵 ,  1o )  +o  𝐶 ) )  =  ( ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  if ( 𝐵  ∈  On ,  𝐵 ,  1o ) )  ·o  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐶 ) ) ) ) | 
						
							| 74 | 73 | imbi2d | ⊢ ( 𝐵  =  if ( 𝐵  ∈  On ,  𝐵 ,  1o )  →  ( ( 𝐶  ∈  On  →  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐵 )  ·o  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐶 ) ) )  ↔  ( 𝐶  ∈  On  →  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  ( if ( 𝐵  ∈  On ,  𝐵 ,  1o )  +o  𝐶 ) )  =  ( ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  if ( 𝐵  ∈  On ,  𝐵 ,  1o ) )  ·o  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐶 ) ) ) ) ) | 
						
							| 75 |  | eleq1 | ⊢ ( 𝐴  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( 𝐴  ∈  On  ↔  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ∈  On ) ) | 
						
							| 76 |  | eleq2 | ⊢ ( 𝐴  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( ∅  ∈  𝐴  ↔  ∅  ∈  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o ) ) ) | 
						
							| 77 | 75 76 | anbi12d | ⊢ ( 𝐴  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 )  ↔  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ∈  On  ∧  ∅  ∈  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o ) ) ) ) | 
						
							| 78 |  | eleq1 | ⊢ ( 1o  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( 1o  ∈  On  ↔  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ∈  On ) ) | 
						
							| 79 |  | eleq2 | ⊢ ( 1o  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( ∅  ∈  1o  ↔  ∅  ∈  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o ) ) ) | 
						
							| 80 | 78 79 | anbi12d | ⊢ ( 1o  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( ( 1o  ∈  On  ∧  ∅  ∈  1o )  ↔  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ∈  On  ∧  ∅  ∈  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o ) ) ) ) | 
						
							| 81 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 82 |  | 0lt1o | ⊢ ∅  ∈  1o | 
						
							| 83 | 81 82 | pm3.2i | ⊢ ( 1o  ∈  On  ∧  ∅  ∈  1o ) | 
						
							| 84 | 77 80 83 | elimhyp | ⊢ ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ∈  On  ∧  ∅  ∈  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o ) ) | 
						
							| 85 | 84 | simpli | ⊢ if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ∈  On | 
						
							| 86 | 84 | simpri | ⊢ ∅  ∈  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o ) | 
						
							| 87 | 81 | elimel | ⊢ if ( 𝐵  ∈  On ,  𝐵 ,  1o )  ∈  On | 
						
							| 88 | 85 86 87 | oeoalem | ⊢ ( 𝐶  ∈  On  →  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  ( if ( 𝐵  ∈  On ,  𝐵 ,  1o )  +o  𝐶 ) )  =  ( ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  if ( 𝐵  ∈  On ,  𝐵 ,  1o ) )  ·o  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐶 ) ) ) | 
						
							| 89 | 68 74 88 | dedth2h | ⊢ ( ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 )  ∧  𝐵  ∈  On )  →  ( 𝐶  ∈  On  →  ( 𝐴  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ( 𝐴  ↑o  𝐵 )  ·o  ( 𝐴  ↑o  𝐶 ) ) ) ) | 
						
							| 90 | 89 | impr | ⊢ ( ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐵  ∈  On  ∧  𝐶  ∈  On ) )  →  ( 𝐴  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ( 𝐴  ↑o  𝐵 )  ·o  ( 𝐴  ↑o  𝐶 ) ) ) | 
						
							| 91 | 90 | an32s | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  On  ∧  𝐶  ∈  On ) )  ∧  ∅  ∈  𝐴 )  →  ( 𝐴  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ( 𝐴  ↑o  𝐵 )  ·o  ( 𝐴  ↑o  𝐶 ) ) ) | 
						
							| 92 | 62 91 | oe0lem | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  On  ∧  𝐶  ∈  On ) )  →  ( 𝐴  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ( 𝐴  ↑o  𝐵 )  ·o  ( 𝐴  ↑o  𝐶 ) ) ) | 
						
							| 93 | 92 | 3impb | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐴  ↑o  ( 𝐵  +o  𝐶 ) )  =  ( ( 𝐴  ↑o  𝐵 )  ·o  ( 𝐴  ↑o  𝐶 ) ) ) |