Step |
Hyp |
Ref |
Expression |
1 |
|
oa00 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 +o 𝐶 ) = ∅ ↔ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) ) |
2 |
1
|
biimpar |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( 𝐵 +o 𝐶 ) = ∅ ) |
3 |
2
|
oveq2d |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ( ∅ ↑o ∅ ) ) |
4 |
|
oveq2 |
⊢ ( 𝐵 = ∅ → ( ∅ ↑o 𝐵 ) = ( ∅ ↑o ∅ ) ) |
5 |
|
oveq2 |
⊢ ( 𝐶 = ∅ → ( ∅ ↑o 𝐶 ) = ( ∅ ↑o ∅ ) ) |
6 |
|
oe0m0 |
⊢ ( ∅ ↑o ∅ ) = 1o |
7 |
5 6
|
eqtrdi |
⊢ ( 𝐶 = ∅ → ( ∅ ↑o 𝐶 ) = 1o ) |
8 |
4 7
|
oveqan12d |
⊢ ( ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ( ( ∅ ↑o ∅ ) ·o 1o ) ) |
9 |
|
0elon |
⊢ ∅ ∈ On |
10 |
|
oecl |
⊢ ( ( ∅ ∈ On ∧ ∅ ∈ On ) → ( ∅ ↑o ∅ ) ∈ On ) |
11 |
9 9 10
|
mp2an |
⊢ ( ∅ ↑o ∅ ) ∈ On |
12 |
|
om1 |
⊢ ( ( ∅ ↑o ∅ ) ∈ On → ( ( ∅ ↑o ∅ ) ·o 1o ) = ( ∅ ↑o ∅ ) ) |
13 |
11 12
|
ax-mp |
⊢ ( ( ∅ ↑o ∅ ) ·o 1o ) = ( ∅ ↑o ∅ ) |
14 |
8 13
|
eqtrdi |
⊢ ( ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ( ∅ ↑o ∅ ) ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ( ∅ ↑o ∅ ) ) |
16 |
3 15
|
eqtr4d |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) ) |
17 |
|
oacl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +o 𝐶 ) ∈ On ) |
18 |
|
on0eln0 |
⊢ ( ( 𝐵 +o 𝐶 ) ∈ On → ( ∅ ∈ ( 𝐵 +o 𝐶 ) ↔ ( 𝐵 +o 𝐶 ) ≠ ∅ ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ ( 𝐵 +o 𝐶 ) ↔ ( 𝐵 +o 𝐶 ) ≠ ∅ ) ) |
20 |
|
oe0m1 |
⊢ ( ( 𝐵 +o 𝐶 ) ∈ On → ( ∅ ∈ ( 𝐵 +o 𝐶 ) ↔ ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ∅ ) ) |
21 |
17 20
|
syl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ ( 𝐵 +o 𝐶 ) ↔ ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ∅ ) ) |
22 |
1
|
necon3abid |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 +o 𝐶 ) ≠ ∅ ↔ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) ) |
23 |
19 21 22
|
3bitr3d |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ∅ ↔ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) ) |
24 |
23
|
biimpar |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ∅ ) |
25 |
|
on0eln0 |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
27 |
|
on0eln0 |
⊢ ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅ ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅ ) ) |
29 |
26 28
|
orbi12d |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ∅ ∈ 𝐵 ∨ ∅ ∈ 𝐶 ) ↔ ( 𝐵 ≠ ∅ ∨ 𝐶 ≠ ∅ ) ) ) |
30 |
|
neorian |
⊢ ( ( 𝐵 ≠ ∅ ∨ 𝐶 ≠ ∅ ) ↔ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) |
31 |
29 30
|
bitrdi |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ∅ ∈ 𝐵 ∨ ∅ ∈ 𝐶 ) ↔ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) ) |
32 |
|
oe0m1 |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ ( ∅ ↑o 𝐵 ) = ∅ ) ) |
33 |
32
|
biimpa |
⊢ ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) = ∅ ) |
34 |
33
|
oveq1d |
⊢ ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ( ∅ ·o ( ∅ ↑o 𝐶 ) ) ) |
35 |
|
oecl |
⊢ ( ( ∅ ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ↑o 𝐶 ) ∈ On ) |
36 |
9 35
|
mpan |
⊢ ( 𝐶 ∈ On → ( ∅ ↑o 𝐶 ) ∈ On ) |
37 |
|
om0r |
⊢ ( ( ∅ ↑o 𝐶 ) ∈ On → ( ∅ ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
38 |
36 37
|
syl |
⊢ ( 𝐶 ∈ On → ( ∅ ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
39 |
34 38
|
sylan9eq |
⊢ ( ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ∧ 𝐶 ∈ On ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
40 |
39
|
an32s |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
41 |
|
oe0m1 |
⊢ ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ ( ∅ ↑o 𝐶 ) = ∅ ) ) |
42 |
41
|
biimpa |
⊢ ( ( 𝐶 ∈ On ∧ ∅ ∈ 𝐶 ) → ( ∅ ↑o 𝐶 ) = ∅ ) |
43 |
42
|
oveq2d |
⊢ ( ( 𝐶 ∈ On ∧ ∅ ∈ 𝐶 ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ( ( ∅ ↑o 𝐵 ) ·o ∅ ) ) |
44 |
|
oecl |
⊢ ( ( ∅ ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ↑o 𝐵 ) ∈ On ) |
45 |
9 44
|
mpan |
⊢ ( 𝐵 ∈ On → ( ∅ ↑o 𝐵 ) ∈ On ) |
46 |
|
om0 |
⊢ ( ( ∅ ↑o 𝐵 ) ∈ On → ( ( ∅ ↑o 𝐵 ) ·o ∅ ) = ∅ ) |
47 |
45 46
|
syl |
⊢ ( 𝐵 ∈ On → ( ( ∅ ↑o 𝐵 ) ·o ∅ ) = ∅ ) |
48 |
43 47
|
sylan9eqr |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝐶 ∈ On ∧ ∅ ∈ 𝐶 ) ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
49 |
48
|
anassrs |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
50 |
40 49
|
jaodan |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( ∅ ∈ 𝐵 ∨ ∅ ∈ 𝐶 ) ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
51 |
50
|
ex |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ∅ ∈ 𝐵 ∨ ∅ ∈ 𝐶 ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) ) |
52 |
31 51
|
sylbird |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) ) |
53 |
52
|
imp |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
54 |
24 53
|
eqtr4d |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) ) |
55 |
16 54
|
pm2.61dan |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) ) |
56 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) ) |
57 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐵 ) = ( ∅ ↑o 𝐵 ) ) |
58 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐶 ) = ( ∅ ↑o 𝐶 ) ) |
59 |
57 58
|
oveq12d |
⊢ ( 𝐴 = ∅ → ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) = ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) ) |
60 |
56 59
|
eqeq12d |
⊢ ( 𝐴 = ∅ → ( ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ↔ ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) ) ) |
61 |
55 60
|
syl5ibr |
⊢ ( 𝐴 = ∅ → ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) ) |
62 |
61
|
impcom |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) |
63 |
|
oveq1 |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 +o 𝐶 ) ) ) |
64 |
|
oveq1 |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( 𝐴 ↑o 𝐵 ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ) |
65 |
|
oveq1 |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( 𝐴 ↑o 𝐶 ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) |
66 |
64 65
|
oveq12d |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) |
67 |
63 66
|
eqeq12d |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ↔ ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) ) |
68 |
67
|
imbi2d |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( 𝐶 ∈ On → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) ↔ ( 𝐶 ∈ On → ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) ) ) |
69 |
|
oveq1 |
⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , 1o ) → ( 𝐵 +o 𝐶 ) = ( if ( 𝐵 ∈ On , 𝐵 , 1o ) +o 𝐶 ) ) |
70 |
69
|
oveq2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , 1o ) → ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 +o 𝐶 ) ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( if ( 𝐵 ∈ On , 𝐵 , 1o ) +o 𝐶 ) ) ) |
71 |
|
oveq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , 1o ) → ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o if ( 𝐵 ∈ On , 𝐵 , 1o ) ) ) |
72 |
71
|
oveq1d |
⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , 1o ) → ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o if ( 𝐵 ∈ On , 𝐵 , 1o ) ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) |
73 |
70 72
|
eqeq12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , 1o ) → ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ↔ ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( if ( 𝐵 ∈ On , 𝐵 , 1o ) +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o if ( 𝐵 ∈ On , 𝐵 , 1o ) ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) ) |
74 |
73
|
imbi2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , 1o ) → ( ( 𝐶 ∈ On → ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) ↔ ( 𝐶 ∈ On → ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( if ( 𝐵 ∈ On , 𝐵 , 1o ) +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o if ( 𝐵 ∈ On , 𝐵 , 1o ) ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) ) ) |
75 |
|
eleq1 |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( 𝐴 ∈ On ↔ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ) ) |
76 |
|
eleq2 |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ∅ ∈ 𝐴 ↔ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) ) |
77 |
75 76
|
anbi12d |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ↔ ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ∧ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) ) ) |
78 |
|
eleq1 |
⊢ ( 1o = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( 1o ∈ On ↔ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ) ) |
79 |
|
eleq2 |
⊢ ( 1o = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ∅ ∈ 1o ↔ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) ) |
80 |
78 79
|
anbi12d |
⊢ ( 1o = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( 1o ∈ On ∧ ∅ ∈ 1o ) ↔ ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ∧ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) ) ) |
81 |
|
1on |
⊢ 1o ∈ On |
82 |
|
0lt1o |
⊢ ∅ ∈ 1o |
83 |
81 82
|
pm3.2i |
⊢ ( 1o ∈ On ∧ ∅ ∈ 1o ) |
84 |
77 80 83
|
elimhyp |
⊢ ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ∧ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) |
85 |
84
|
simpli |
⊢ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On |
86 |
84
|
simpri |
⊢ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) |
87 |
81
|
elimel |
⊢ if ( 𝐵 ∈ On , 𝐵 , 1o ) ∈ On |
88 |
85 86 87
|
oeoalem |
⊢ ( 𝐶 ∈ On → ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( if ( 𝐵 ∈ On , 𝐵 , 1o ) +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o if ( 𝐵 ∈ On , 𝐵 , 1o ) ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) |
89 |
68 74 88
|
dedth2h |
⊢ ( ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → ( 𝐶 ∈ On → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) ) |
90 |
89
|
impr |
⊢ ( ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) |
91 |
90
|
an32s |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) |
92 |
62 91
|
oe0lem |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) |
93 |
92
|
3impb |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) |