| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝐵  =  ∅  →  ( ∅  ↑o  𝐵 )  =  ( ∅  ↑o  ∅ ) ) | 
						
							| 2 |  | oe0m0 | ⊢ ( ∅  ↑o  ∅ )  =  1o | 
						
							| 3 | 1 2 | eqtrdi | ⊢ ( 𝐵  =  ∅  →  ( ∅  ↑o  𝐵 )  =  1o ) | 
						
							| 4 | 3 | oveq1d | ⊢ ( 𝐵  =  ∅  →  ( ( ∅  ↑o  𝐵 )  ↑o  𝐶 )  =  ( 1o  ↑o  𝐶 ) ) | 
						
							| 5 |  | oe1m | ⊢ ( 𝐶  ∈  On  →  ( 1o  ↑o  𝐶 )  =  1o ) | 
						
							| 6 | 4 5 | sylan9eqr | ⊢ ( ( 𝐶  ∈  On  ∧  𝐵  =  ∅ )  →  ( ( ∅  ↑o  𝐵 )  ↑o  𝐶 )  =  1o ) | 
						
							| 7 | 6 | adantll | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝐵  =  ∅ )  →  ( ( ∅  ↑o  𝐵 )  ↑o  𝐶 )  =  1o ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝐶  =  ∅  →  ( ( ∅  ↑o  𝐵 )  ↑o  𝐶 )  =  ( ( ∅  ↑o  𝐵 )  ↑o  ∅ ) ) | 
						
							| 9 |  | 0elon | ⊢ ∅  ∈  On | 
						
							| 10 |  | oecl | ⊢ ( ( ∅  ∈  On  ∧  𝐵  ∈  On )  →  ( ∅  ↑o  𝐵 )  ∈  On ) | 
						
							| 11 | 9 10 | mpan | ⊢ ( 𝐵  ∈  On  →  ( ∅  ↑o  𝐵 )  ∈  On ) | 
						
							| 12 |  | oe0 | ⊢ ( ( ∅  ↑o  𝐵 )  ∈  On  →  ( ( ∅  ↑o  𝐵 )  ↑o  ∅ )  =  1o ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝐵  ∈  On  →  ( ( ∅  ↑o  𝐵 )  ↑o  ∅ )  =  1o ) | 
						
							| 14 | 8 13 | sylan9eqr | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  =  ∅ )  →  ( ( ∅  ↑o  𝐵 )  ↑o  𝐶 )  =  1o ) | 
						
							| 15 | 14 | adantlr | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝐶  =  ∅ )  →  ( ( ∅  ↑o  𝐵 )  ↑o  𝐶 )  =  1o ) | 
						
							| 16 | 7 15 | jaodan | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ( 𝐵  =  ∅  ∨  𝐶  =  ∅ ) )  →  ( ( ∅  ↑o  𝐵 )  ↑o  𝐶 )  =  1o ) | 
						
							| 17 |  | om00 | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( 𝐵  ·o  𝐶 )  =  ∅  ↔  ( 𝐵  =  ∅  ∨  𝐶  =  ∅ ) ) ) | 
						
							| 18 | 17 | biimpar | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ( 𝐵  =  ∅  ∨  𝐶  =  ∅ ) )  →  ( 𝐵  ·o  𝐶 )  =  ∅ ) | 
						
							| 19 | 18 | oveq2d | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ( 𝐵  =  ∅  ∨  𝐶  =  ∅ ) )  →  ( ∅  ↑o  ( 𝐵  ·o  𝐶 ) )  =  ( ∅  ↑o  ∅ ) ) | 
						
							| 20 | 19 2 | eqtrdi | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ( 𝐵  =  ∅  ∨  𝐶  =  ∅ ) )  →  ( ∅  ↑o  ( 𝐵  ·o  𝐶 ) )  =  1o ) | 
						
							| 21 | 16 20 | eqtr4d | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ( 𝐵  =  ∅  ∨  𝐶  =  ∅ ) )  →  ( ( ∅  ↑o  𝐵 )  ↑o  𝐶 )  =  ( ∅  ↑o  ( 𝐵  ·o  𝐶 ) ) ) | 
						
							| 22 |  | on0eln0 | ⊢ ( 𝐵  ∈  On  →  ( ∅  ∈  𝐵  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 23 |  | on0eln0 | ⊢ ( 𝐶  ∈  On  →  ( ∅  ∈  𝐶  ↔  𝐶  ≠  ∅ ) ) | 
						
							| 24 | 22 23 | bi2anan9 | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( ∅  ∈  𝐵  ∧  ∅  ∈  𝐶 )  ↔  ( 𝐵  ≠  ∅  ∧  𝐶  ≠  ∅ ) ) ) | 
						
							| 25 |  | neanior | ⊢ ( ( 𝐵  ≠  ∅  ∧  𝐶  ≠  ∅ )  ↔  ¬  ( 𝐵  =  ∅  ∨  𝐶  =  ∅ ) ) | 
						
							| 26 | 24 25 | bitrdi | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( ∅  ∈  𝐵  ∧  ∅  ∈  𝐶 )  ↔  ¬  ( 𝐵  =  ∅  ∨  𝐶  =  ∅ ) ) ) | 
						
							| 27 |  | oe0m1 | ⊢ ( 𝐵  ∈  On  →  ( ∅  ∈  𝐵  ↔  ( ∅  ↑o  𝐵 )  =  ∅ ) ) | 
						
							| 28 | 27 | biimpa | ⊢ ( ( 𝐵  ∈  On  ∧  ∅  ∈  𝐵 )  →  ( ∅  ↑o  𝐵 )  =  ∅ ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( ( 𝐵  ∈  On  ∧  ∅  ∈  𝐵 )  →  ( ( ∅  ↑o  𝐵 )  ↑o  𝐶 )  =  ( ∅  ↑o  𝐶 ) ) | 
						
							| 30 |  | oe0m1 | ⊢ ( 𝐶  ∈  On  →  ( ∅  ∈  𝐶  ↔  ( ∅  ↑o  𝐶 )  =  ∅ ) ) | 
						
							| 31 | 30 | biimpa | ⊢ ( ( 𝐶  ∈  On  ∧  ∅  ∈  𝐶 )  →  ( ∅  ↑o  𝐶 )  =  ∅ ) | 
						
							| 32 | 29 31 | sylan9eq | ⊢ ( ( ( 𝐵  ∈  On  ∧  ∅  ∈  𝐵 )  ∧  ( 𝐶  ∈  On  ∧  ∅  ∈  𝐶 ) )  →  ( ( ∅  ↑o  𝐵 )  ↑o  𝐶 )  =  ∅ ) | 
						
							| 33 | 32 | an4s | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ( ∅  ∈  𝐵  ∧  ∅  ∈  𝐶 ) )  →  ( ( ∅  ↑o  𝐵 )  ↑o  𝐶 )  =  ∅ ) | 
						
							| 34 |  | om00el | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ∅  ∈  ( 𝐵  ·o  𝐶 )  ↔  ( ∅  ∈  𝐵  ∧  ∅  ∈  𝐶 ) ) ) | 
						
							| 35 |  | omcl | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐵  ·o  𝐶 )  ∈  On ) | 
						
							| 36 |  | oe0m1 | ⊢ ( ( 𝐵  ·o  𝐶 )  ∈  On  →  ( ∅  ∈  ( 𝐵  ·o  𝐶 )  ↔  ( ∅  ↑o  ( 𝐵  ·o  𝐶 ) )  =  ∅ ) ) | 
						
							| 37 | 35 36 | syl | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ∅  ∈  ( 𝐵  ·o  𝐶 )  ↔  ( ∅  ↑o  ( 𝐵  ·o  𝐶 ) )  =  ∅ ) ) | 
						
							| 38 | 34 37 | bitr3d | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( ∅  ∈  𝐵  ∧  ∅  ∈  𝐶 )  ↔  ( ∅  ↑o  ( 𝐵  ·o  𝐶 ) )  =  ∅ ) ) | 
						
							| 39 | 38 | biimpa | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ( ∅  ∈  𝐵  ∧  ∅  ∈  𝐶 ) )  →  ( ∅  ↑o  ( 𝐵  ·o  𝐶 ) )  =  ∅ ) | 
						
							| 40 | 33 39 | eqtr4d | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ( ∅  ∈  𝐵  ∧  ∅  ∈  𝐶 ) )  →  ( ( ∅  ↑o  𝐵 )  ↑o  𝐶 )  =  ( ∅  ↑o  ( 𝐵  ·o  𝐶 ) ) ) | 
						
							| 41 | 40 | ex | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( ∅  ∈  𝐵  ∧  ∅  ∈  𝐶 )  →  ( ( ∅  ↑o  𝐵 )  ↑o  𝐶 )  =  ( ∅  ↑o  ( 𝐵  ·o  𝐶 ) ) ) ) | 
						
							| 42 | 26 41 | sylbird | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ¬  ( 𝐵  =  ∅  ∨  𝐶  =  ∅ )  →  ( ( ∅  ↑o  𝐵 )  ↑o  𝐶 )  =  ( ∅  ↑o  ( 𝐵  ·o  𝐶 ) ) ) ) | 
						
							| 43 | 42 | imp | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ¬  ( 𝐵  =  ∅  ∨  𝐶  =  ∅ ) )  →  ( ( ∅  ↑o  𝐵 )  ↑o  𝐶 )  =  ( ∅  ↑o  ( 𝐵  ·o  𝐶 ) ) ) | 
						
							| 44 | 21 43 | pm2.61dan | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( ∅  ↑o  𝐵 )  ↑o  𝐶 )  =  ( ∅  ↑o  ( 𝐵  ·o  𝐶 ) ) ) | 
						
							| 45 |  | oveq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ↑o  𝐵 )  =  ( ∅  ↑o  𝐵 ) ) | 
						
							| 46 | 45 | oveq1d | ⊢ ( 𝐴  =  ∅  →  ( ( 𝐴  ↑o  𝐵 )  ↑o  𝐶 )  =  ( ( ∅  ↑o  𝐵 )  ↑o  𝐶 ) ) | 
						
							| 47 |  | oveq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ↑o  ( 𝐵  ·o  𝐶 ) )  =  ( ∅  ↑o  ( 𝐵  ·o  𝐶 ) ) ) | 
						
							| 48 | 46 47 | eqeq12d | ⊢ ( 𝐴  =  ∅  →  ( ( ( 𝐴  ↑o  𝐵 )  ↑o  𝐶 )  =  ( 𝐴  ↑o  ( 𝐵  ·o  𝐶 ) )  ↔  ( ( ∅  ↑o  𝐵 )  ↑o  𝐶 )  =  ( ∅  ↑o  ( 𝐵  ·o  𝐶 ) ) ) ) | 
						
							| 49 | 44 48 | imbitrrid | ⊢ ( 𝐴  =  ∅  →  ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( 𝐴  ↑o  𝐵 )  ↑o  𝐶 )  =  ( 𝐴  ↑o  ( 𝐵  ·o  𝐶 ) ) ) ) | 
						
							| 50 | 49 | impcom | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝐴  =  ∅ )  →  ( ( 𝐴  ↑o  𝐵 )  ↑o  𝐶 )  =  ( 𝐴  ↑o  ( 𝐵  ·o  𝐶 ) ) ) | 
						
							| 51 |  | oveq1 | ⊢ ( 𝐴  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( 𝐴  ↑o  𝐵 )  =  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐵 ) ) | 
						
							| 52 | 51 | oveq1d | ⊢ ( 𝐴  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( ( 𝐴  ↑o  𝐵 )  ↑o  𝐶 )  =  ( ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐵 )  ↑o  𝐶 ) ) | 
						
							| 53 |  | oveq1 | ⊢ ( 𝐴  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( 𝐴  ↑o  ( 𝐵  ·o  𝐶 ) )  =  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  ( 𝐵  ·o  𝐶 ) ) ) | 
						
							| 54 | 52 53 | eqeq12d | ⊢ ( 𝐴  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( ( ( 𝐴  ↑o  𝐵 )  ↑o  𝐶 )  =  ( 𝐴  ↑o  ( 𝐵  ·o  𝐶 ) )  ↔  ( ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐵 )  ↑o  𝐶 )  =  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  ( 𝐵  ·o  𝐶 ) ) ) ) | 
						
							| 55 | 54 | imbi2d | ⊢ ( 𝐴  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( 𝐴  ↑o  𝐵 )  ↑o  𝐶 )  =  ( 𝐴  ↑o  ( 𝐵  ·o  𝐶 ) ) )  ↔  ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐵 )  ↑o  𝐶 )  =  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  ( 𝐵  ·o  𝐶 ) ) ) ) ) | 
						
							| 56 |  | eleq1 | ⊢ ( 𝐴  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( 𝐴  ∈  On  ↔  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ∈  On ) ) | 
						
							| 57 |  | eleq2 | ⊢ ( 𝐴  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( ∅  ∈  𝐴  ↔  ∅  ∈  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o ) ) ) | 
						
							| 58 | 56 57 | anbi12d | ⊢ ( 𝐴  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 )  ↔  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ∈  On  ∧  ∅  ∈  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o ) ) ) ) | 
						
							| 59 |  | eleq1 | ⊢ ( 1o  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( 1o  ∈  On  ↔  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ∈  On ) ) | 
						
							| 60 |  | eleq2 | ⊢ ( 1o  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( ∅  ∈  1o  ↔  ∅  ∈  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o ) ) ) | 
						
							| 61 | 59 60 | anbi12d | ⊢ ( 1o  =  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  →  ( ( 1o  ∈  On  ∧  ∅  ∈  1o )  ↔  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ∈  On  ∧  ∅  ∈  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o ) ) ) ) | 
						
							| 62 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 63 |  | 0lt1o | ⊢ ∅  ∈  1o | 
						
							| 64 | 62 63 | pm3.2i | ⊢ ( 1o  ∈  On  ∧  ∅  ∈  1o ) | 
						
							| 65 | 58 61 64 | elimhyp | ⊢ ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ∈  On  ∧  ∅  ∈  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o ) ) | 
						
							| 66 | 65 | simpli | ⊢ if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ∈  On | 
						
							| 67 | 65 | simpri | ⊢ ∅  ∈  if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o ) | 
						
							| 68 | 66 67 | oeoelem | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  𝐵 )  ↑o  𝐶 )  =  ( if ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ,  𝐴 ,  1o )  ↑o  ( 𝐵  ·o  𝐶 ) ) ) | 
						
							| 69 | 55 68 | dedth | ⊢ ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 )  →  ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( 𝐴  ↑o  𝐵 )  ↑o  𝐶 )  =  ( 𝐴  ↑o  ( 𝐵  ·o  𝐶 ) ) ) ) | 
						
							| 70 | 69 | imp | ⊢ ( ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐵  ∈  On  ∧  𝐶  ∈  On ) )  →  ( ( 𝐴  ↑o  𝐵 )  ↑o  𝐶 )  =  ( 𝐴  ↑o  ( 𝐵  ·o  𝐶 ) ) ) | 
						
							| 71 | 70 | an32s | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  On  ∧  𝐶  ∈  On ) )  ∧  ∅  ∈  𝐴 )  →  ( ( 𝐴  ↑o  𝐵 )  ↑o  𝐶 )  =  ( 𝐴  ↑o  ( 𝐵  ·o  𝐶 ) ) ) | 
						
							| 72 | 50 71 | oe0lem | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  On  ∧  𝐶  ∈  On ) )  →  ( ( 𝐴  ↑o  𝐵 )  ↑o  𝐶 )  =  ( 𝐴  ↑o  ( 𝐵  ·o  𝐶 ) ) ) | 
						
							| 73 | 72 | 3impb | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( 𝐴  ↑o  𝐵 )  ↑o  𝐶 )  =  ( 𝐴  ↑o  ( 𝐵  ·o  𝐶 ) ) ) |