Step |
Hyp |
Ref |
Expression |
1 |
|
oeoelem.1 |
⊢ 𝐴 ∈ On |
2 |
|
oeoelem.2 |
⊢ ∅ ∈ 𝐴 |
3 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( ( 𝐴 ↑o 𝐵 ) ↑o ∅ ) ) |
4 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o ∅ ) ) |
5 |
4
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ↑o ( 𝐵 ·o ∅ ) ) ) |
6 |
3 5
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ↑o 𝐵 ) ↑o ∅ ) = ( 𝐴 ↑o ( 𝐵 ·o ∅ ) ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ) |
8 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o 𝑦 ) ) |
9 |
8
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ) |
10 |
7 9
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( ( 𝐴 ↑o 𝐵 ) ↑o suc 𝑦 ) ) |
12 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o suc 𝑦 ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ↑o ( 𝐵 ·o suc 𝑦 ) ) ) |
14 |
11 13
|
eqeq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ↑o 𝐵 ) ↑o suc 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o suc 𝑦 ) ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) ) |
16 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o 𝐶 ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑥 = 𝐶 → ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) ) |
18 |
15 17
|
eqeq12d |
⊢ ( 𝑥 = 𝐶 → ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) ) ) |
19 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
20 |
1 19
|
mpan |
⊢ ( 𝐵 ∈ On → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
21 |
|
oe0 |
⊢ ( ( 𝐴 ↑o 𝐵 ) ∈ On → ( ( 𝐴 ↑o 𝐵 ) ↑o ∅ ) = 1o ) |
22 |
20 21
|
syl |
⊢ ( 𝐵 ∈ On → ( ( 𝐴 ↑o 𝐵 ) ↑o ∅ ) = 1o ) |
23 |
|
om0 |
⊢ ( 𝐵 ∈ On → ( 𝐵 ·o ∅ ) = ∅ ) |
24 |
23
|
oveq2d |
⊢ ( 𝐵 ∈ On → ( 𝐴 ↑o ( 𝐵 ·o ∅ ) ) = ( 𝐴 ↑o ∅ ) ) |
25 |
|
oe0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) = 1o ) |
26 |
1 25
|
ax-mp |
⊢ ( 𝐴 ↑o ∅ ) = 1o |
27 |
24 26
|
eqtrdi |
⊢ ( 𝐵 ∈ On → ( 𝐴 ↑o ( 𝐵 ·o ∅ ) ) = 1o ) |
28 |
22 27
|
eqtr4d |
⊢ ( 𝐵 ∈ On → ( ( 𝐴 ↑o 𝐵 ) ↑o ∅ ) = ( 𝐴 ↑o ( 𝐵 ·o ∅ ) ) ) |
29 |
|
oveq1 |
⊢ ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) → ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ·o ( 𝐴 ↑o 𝐵 ) ) = ( ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ·o ( 𝐴 ↑o 𝐵 ) ) ) |
30 |
|
oesuc |
⊢ ( ( ( 𝐴 ↑o 𝐵 ) ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) ↑o suc 𝑦 ) = ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ·o ( 𝐴 ↑o 𝐵 ) ) ) |
31 |
20 30
|
sylan |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) ↑o suc 𝑦 ) = ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ·o ( 𝐴 ↑o 𝐵 ) ) ) |
32 |
|
omsuc |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ·o suc 𝑦 ) = ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) |
33 |
32
|
oveq2d |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o ( 𝐵 ·o suc 𝑦 ) ) = ( 𝐴 ↑o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) ) |
34 |
|
omcl |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ·o 𝑦 ) ∈ On ) |
35 |
|
oeoa |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ·o 𝑦 ) ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ·o ( 𝐴 ↑o 𝐵 ) ) ) |
36 |
1 35
|
mp3an1 |
⊢ ( ( ( 𝐵 ·o 𝑦 ) ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ·o ( 𝐴 ↑o 𝐵 ) ) ) |
37 |
34 36
|
sylan |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ·o ( 𝐴 ↑o 𝐵 ) ) ) |
38 |
37
|
anabss1 |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ·o ( 𝐴 ↑o 𝐵 ) ) ) |
39 |
33 38
|
eqtrd |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o ( 𝐵 ·o suc 𝑦 ) ) = ( ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ·o ( 𝐴 ↑o 𝐵 ) ) ) |
40 |
31 39
|
eqeq12d |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( ( 𝐴 ↑o 𝐵 ) ↑o suc 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o suc 𝑦 ) ) ↔ ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ·o ( 𝐴 ↑o 𝐵 ) ) = ( ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ·o ( 𝐴 ↑o 𝐵 ) ) ) ) |
41 |
29 40
|
syl5ibr |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ↑o 𝐵 ) ↑o suc 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o suc 𝑦 ) ) ) ) |
42 |
41
|
expcom |
⊢ ( 𝑦 ∈ On → ( 𝐵 ∈ On → ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ↑o 𝐵 ) ↑o suc 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o suc 𝑦 ) ) ) ) ) |
43 |
|
iuneq2 |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) → ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ) |
44 |
|
vex |
⊢ 𝑥 ∈ V |
45 |
|
oen0 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) |
46 |
2 45
|
mpan2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) |
47 |
|
oelim |
⊢ ( ( ( ( 𝐴 ↑o 𝐵 ) ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ) |
48 |
19 47
|
sylanl1 |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ) |
49 |
46 48
|
mpidan |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ) |
50 |
1 49
|
mpanl1 |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ) |
51 |
44 50
|
mpanr1 |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ) |
52 |
|
omlim |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐵 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ) |
53 |
44 52
|
mpanr1 |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( 𝐵 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ) |
54 |
53
|
oveq2d |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ↑o ∪ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ) ) |
55 |
|
limord |
⊢ ( Lim 𝑥 → Ord 𝑥 ) |
56 |
|
ordelon |
⊢ ( ( Ord 𝑥 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) |
57 |
55 56
|
sylan |
⊢ ( ( Lim 𝑥 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) |
58 |
57 34
|
sylan2 |
⊢ ( ( 𝐵 ∈ On ∧ ( Lim 𝑥 ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝐵 ·o 𝑦 ) ∈ On ) |
59 |
58
|
anassrs |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐵 ·o 𝑦 ) ∈ On ) |
60 |
59
|
ralrimiva |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ∀ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ∈ On ) |
61 |
|
0ellim |
⊢ ( Lim 𝑥 → ∅ ∈ 𝑥 ) |
62 |
61
|
ne0d |
⊢ ( Lim 𝑥 → 𝑥 ≠ ∅ ) |
63 |
62
|
adantl |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → 𝑥 ≠ ∅ ) |
64 |
|
vex |
⊢ 𝑤 ∈ V |
65 |
|
oelim |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑤 ∈ V ∧ Lim 𝑤 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑤 ) = ∪ 𝑧 ∈ 𝑤 ( 𝐴 ↑o 𝑧 ) ) |
66 |
2 65
|
mpan2 |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑤 ∈ V ∧ Lim 𝑤 ) ) → ( 𝐴 ↑o 𝑤 ) = ∪ 𝑧 ∈ 𝑤 ( 𝐴 ↑o 𝑧 ) ) |
67 |
1 66
|
mpan |
⊢ ( ( 𝑤 ∈ V ∧ Lim 𝑤 ) → ( 𝐴 ↑o 𝑤 ) = ∪ 𝑧 ∈ 𝑤 ( 𝐴 ↑o 𝑧 ) ) |
68 |
64 67
|
mpan |
⊢ ( Lim 𝑤 → ( 𝐴 ↑o 𝑤 ) = ∪ 𝑧 ∈ 𝑤 ( 𝐴 ↑o 𝑧 ) ) |
69 |
|
oewordi |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ⊆ 𝑤 → ( 𝐴 ↑o 𝑧 ) ⊆ ( 𝐴 ↑o 𝑤 ) ) ) |
70 |
2 69
|
mpan2 |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑧 ⊆ 𝑤 → ( 𝐴 ↑o 𝑧 ) ⊆ ( 𝐴 ↑o 𝑤 ) ) ) |
71 |
1 70
|
mp3an3 |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) → ( 𝑧 ⊆ 𝑤 → ( 𝐴 ↑o 𝑧 ) ⊆ ( 𝐴 ↑o 𝑤 ) ) ) |
72 |
71
|
3impia |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧 ⊆ 𝑤 ) → ( 𝐴 ↑o 𝑧 ) ⊆ ( 𝐴 ↑o 𝑤 ) ) |
73 |
68 72
|
onoviun |
⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ∈ On ∧ 𝑥 ≠ ∅ ) → ( 𝐴 ↑o ∪ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ) |
74 |
44 60 63 73
|
mp3an2i |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( 𝐴 ↑o ∪ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ) |
75 |
54 74
|
eqtrd |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ) |
76 |
51 75
|
eqeq12d |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) ↔ ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ) ) |
77 |
43 76
|
syl5ibr |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) ) ) |
78 |
77
|
expcom |
⊢ ( Lim 𝑥 → ( 𝐵 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) ) ) ) |
79 |
6 10 14 18 28 42 78
|
tfinds3 |
⊢ ( 𝐶 ∈ On → ( 𝐵 ∈ On → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) ) ) |
80 |
79
|
impcom |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) ) |