| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oeordi | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( 𝐴  ∈  𝐵  →  ( 𝐶  ↑o  𝐴 )  ∈  ( 𝐶  ↑o  𝐵 ) ) ) | 
						
							| 2 | 1 | 3adant1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( 𝐴  ∈  𝐵  →  ( 𝐶  ↑o  𝐴 )  ∈  ( 𝐶  ↑o  𝐵 ) ) ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝐴  =  𝐵  →  ( 𝐶  ↑o  𝐴 )  =  ( 𝐶  ↑o  𝐵 ) ) | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( 𝐴  =  𝐵  →  ( 𝐶  ↑o  𝐴 )  =  ( 𝐶  ↑o  𝐵 ) ) ) | 
						
							| 5 |  | oeordi | ⊢ ( ( 𝐴  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( 𝐵  ∈  𝐴  →  ( 𝐶  ↑o  𝐵 )  ∈  ( 𝐶  ↑o  𝐴 ) ) ) | 
						
							| 6 | 5 | 3adant2 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( 𝐵  ∈  𝐴  →  ( 𝐶  ↑o  𝐵 )  ∈  ( 𝐶  ↑o  𝐴 ) ) ) | 
						
							| 7 | 4 6 | orim12d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( ( 𝐴  =  𝐵  ∨  𝐵  ∈  𝐴 )  →  ( ( 𝐶  ↑o  𝐴 )  =  ( 𝐶  ↑o  𝐵 )  ∨  ( 𝐶  ↑o  𝐵 )  ∈  ( 𝐶  ↑o  𝐴 ) ) ) ) | 
						
							| 8 | 7 | con3d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( ¬  ( ( 𝐶  ↑o  𝐴 )  =  ( 𝐶  ↑o  𝐵 )  ∨  ( 𝐶  ↑o  𝐵 )  ∈  ( 𝐶  ↑o  𝐴 ) )  →  ¬  ( 𝐴  =  𝐵  ∨  𝐵  ∈  𝐴 ) ) ) | 
						
							| 9 |  | eldifi | ⊢ ( 𝐶  ∈  ( On  ∖  2o )  →  𝐶  ∈  On ) | 
						
							| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  𝐶  ∈  On ) | 
						
							| 11 |  | simp1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  𝐴  ∈  On ) | 
						
							| 12 |  | oecl | ⊢ ( ( 𝐶  ∈  On  ∧  𝐴  ∈  On )  →  ( 𝐶  ↑o  𝐴 )  ∈  On ) | 
						
							| 13 | 10 11 12 | syl2anc | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( 𝐶  ↑o  𝐴 )  ∈  On ) | 
						
							| 14 |  | simp2 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  𝐵  ∈  On ) | 
						
							| 15 |  | oecl | ⊢ ( ( 𝐶  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐶  ↑o  𝐵 )  ∈  On ) | 
						
							| 16 | 10 14 15 | syl2anc | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( 𝐶  ↑o  𝐵 )  ∈  On ) | 
						
							| 17 |  | eloni | ⊢ ( ( 𝐶  ↑o  𝐴 )  ∈  On  →  Ord  ( 𝐶  ↑o  𝐴 ) ) | 
						
							| 18 |  | eloni | ⊢ ( ( 𝐶  ↑o  𝐵 )  ∈  On  →  Ord  ( 𝐶  ↑o  𝐵 ) ) | 
						
							| 19 |  | ordtri2 | ⊢ ( ( Ord  ( 𝐶  ↑o  𝐴 )  ∧  Ord  ( 𝐶  ↑o  𝐵 ) )  →  ( ( 𝐶  ↑o  𝐴 )  ∈  ( 𝐶  ↑o  𝐵 )  ↔  ¬  ( ( 𝐶  ↑o  𝐴 )  =  ( 𝐶  ↑o  𝐵 )  ∨  ( 𝐶  ↑o  𝐵 )  ∈  ( 𝐶  ↑o  𝐴 ) ) ) ) | 
						
							| 20 | 17 18 19 | syl2an | ⊢ ( ( ( 𝐶  ↑o  𝐴 )  ∈  On  ∧  ( 𝐶  ↑o  𝐵 )  ∈  On )  →  ( ( 𝐶  ↑o  𝐴 )  ∈  ( 𝐶  ↑o  𝐵 )  ↔  ¬  ( ( 𝐶  ↑o  𝐴 )  =  ( 𝐶  ↑o  𝐵 )  ∨  ( 𝐶  ↑o  𝐵 )  ∈  ( 𝐶  ↑o  𝐴 ) ) ) ) | 
						
							| 21 | 13 16 20 | syl2anc | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( ( 𝐶  ↑o  𝐴 )  ∈  ( 𝐶  ↑o  𝐵 )  ↔  ¬  ( ( 𝐶  ↑o  𝐴 )  =  ( 𝐶  ↑o  𝐵 )  ∨  ( 𝐶  ↑o  𝐵 )  ∈  ( 𝐶  ↑o  𝐴 ) ) ) ) | 
						
							| 22 |  | eloni | ⊢ ( 𝐴  ∈  On  →  Ord  𝐴 ) | 
						
							| 23 |  | eloni | ⊢ ( 𝐵  ∈  On  →  Ord  𝐵 ) | 
						
							| 24 |  | ordtri2 | ⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( 𝐴  ∈  𝐵  ↔  ¬  ( 𝐴  =  𝐵  ∨  𝐵  ∈  𝐴 ) ) ) | 
						
							| 25 | 22 23 24 | syl2an | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ∈  𝐵  ↔  ¬  ( 𝐴  =  𝐵  ∨  𝐵  ∈  𝐴 ) ) ) | 
						
							| 26 | 25 | 3adant3 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( 𝐴  ∈  𝐵  ↔  ¬  ( 𝐴  =  𝐵  ∨  𝐵  ∈  𝐴 ) ) ) | 
						
							| 27 | 8 21 26 | 3imtr4d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( ( 𝐶  ↑o  𝐴 )  ∈  ( 𝐶  ↑o  𝐵 )  →  𝐴  ∈  𝐵 ) ) | 
						
							| 28 | 2 27 | impbid | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( 𝐴  ∈  𝐵  ↔  ( 𝐶  ↑o  𝐴 )  ∈  ( 𝐶  ↑o  𝐵 ) ) ) |