Description: Ordinal exponentiation with a successor exponent. Definition 8.30 of TakeutiZaring p. 67. (Contributed by NM, 31-Dec-2004) (Revised by Mario Carneiro, 8-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | oesuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o suc 𝐵 ) = ( ( 𝐴 ↑o 𝐵 ) ·o 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limon | ⊢ Lim On | |
2 | rdgsuc | ⊢ ( 𝐵 ∈ On → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) ‘ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) ) | |
3 | 1 2 | oesuclem | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o suc 𝐵 ) = ( ( 𝐴 ↑o 𝐵 ) ·o 𝐴 ) ) |