Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 = ∅ ↔ 𝐴 = ∅ ) ) |
2 |
|
oveq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ·o 𝑦 ) = ( 𝑥 ·o 𝐴 ) ) |
3 |
2
|
mpteq2dv |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝑦 ) ) = ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) ) |
4 |
|
rdgeq1 |
⊢ ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝑦 ) ) = ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) → rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝑦 ) ) , 1o ) = rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ) |
5 |
3 4
|
syl |
⊢ ( 𝑦 = 𝐴 → rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝑦 ) ) , 1o ) = rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ) |
6 |
5
|
fveq1d |
⊢ ( 𝑦 = 𝐴 → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝑦 ) ) , 1o ) ‘ 𝑧 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝑧 ) ) |
7 |
1 6
|
ifbieq2d |
⊢ ( 𝑦 = 𝐴 → if ( 𝑦 = ∅ , ( 1o ∖ 𝑧 ) , ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝑦 ) ) , 1o ) ‘ 𝑧 ) ) = if ( 𝐴 = ∅ , ( 1o ∖ 𝑧 ) , ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝑧 ) ) ) |
8 |
|
difeq2 |
⊢ ( 𝑧 = 𝐵 → ( 1o ∖ 𝑧 ) = ( 1o ∖ 𝐵 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑧 = 𝐵 → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝑧 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) |
10 |
8 9
|
ifeq12d |
⊢ ( 𝑧 = 𝐵 → if ( 𝐴 = ∅ , ( 1o ∖ 𝑧 ) , ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝑧 ) ) = if ( 𝐴 = ∅ , ( 1o ∖ 𝐵 ) , ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) ) |
11 |
|
df-oexp |
⊢ ↑o = ( 𝑦 ∈ On , 𝑧 ∈ On ↦ if ( 𝑦 = ∅ , ( 1o ∖ 𝑧 ) , ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝑦 ) ) , 1o ) ‘ 𝑧 ) ) ) |
12 |
|
1oex |
⊢ 1o ∈ V |
13 |
12
|
difexi |
⊢ ( 1o ∖ 𝐵 ) ∈ V |
14 |
|
fvex |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∈ V |
15 |
13 14
|
ifex |
⊢ if ( 𝐴 = ∅ , ( 1o ∖ 𝐵 ) , ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) ∈ V |
16 |
7 10 11 15
|
ovmpo |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) = if ( 𝐴 = ∅ , ( 1o ∖ 𝐵 ) , ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) ) |