Step |
Hyp |
Ref |
Expression |
1 |
|
oveq12 |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( 𝐴 ↑o 𝐵 ) = ( ∅ ↑o ∅ ) ) |
2 |
|
oe0m0 |
⊢ ( ∅ ↑o ∅ ) = 1o |
3 |
1 2
|
eqtrdi |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( 𝐴 ↑o 𝐵 ) = 1o ) |
4 |
|
fveq2 |
⊢ ( 𝐵 = ∅ → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ ∅ ) ) |
5 |
|
1oex |
⊢ 1o ∈ V |
6 |
5
|
rdg0 |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ ∅ ) = 1o |
7 |
4 6
|
eqtrdi |
⊢ ( 𝐵 = ∅ → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) = 1o ) |
8 |
|
inteq |
⊢ ( 𝐵 = ∅ → ∩ 𝐵 = ∩ ∅ ) |
9 |
|
int0 |
⊢ ∩ ∅ = V |
10 |
8 9
|
eqtrdi |
⊢ ( 𝐵 = ∅ → ∩ 𝐵 = V ) |
11 |
7 10
|
ineq12d |
⊢ ( 𝐵 = ∅ → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∩ 𝐵 ) = ( 1o ∩ V ) ) |
12 |
|
inv1 |
⊢ ( 1o ∩ V ) = 1o |
13 |
12
|
a1i |
⊢ ( 𝐴 = ∅ → ( 1o ∩ V ) = 1o ) |
14 |
11 13
|
sylan9eqr |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∩ 𝐵 ) = 1o ) |
15 |
3 14
|
eqtr4d |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( 𝐴 ↑o 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∩ 𝐵 ) ) |
16 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐵 ) = ( ∅ ↑o 𝐵 ) ) |
17 |
|
oe0m1 |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ ( ∅ ↑o 𝐵 ) = ∅ ) ) |
18 |
17
|
biimpa |
⊢ ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) = ∅ ) |
19 |
16 18
|
sylan9eqr |
⊢ ( ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o 𝐵 ) = ∅ ) |
20 |
19
|
an32s |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) ∧ ∅ ∈ 𝐵 ) → ( 𝐴 ↑o 𝐵 ) = ∅ ) |
21 |
|
int0el |
⊢ ( ∅ ∈ 𝐵 → ∩ 𝐵 = ∅ ) |
22 |
21
|
ineq2d |
⊢ ( ∅ ∈ 𝐵 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∩ 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∅ ) ) |
23 |
|
in0 |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∅ ) = ∅ |
24 |
22 23
|
eqtrdi |
⊢ ( ∅ ∈ 𝐵 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∩ 𝐵 ) = ∅ ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) ∧ ∅ ∈ 𝐵 ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∩ 𝐵 ) = ∅ ) |
26 |
20 25
|
eqtr4d |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) ∧ ∅ ∈ 𝐵 ) → ( 𝐴 ↑o 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∩ 𝐵 ) ) |
27 |
15 26
|
oe0lem |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∩ 𝐵 ) ) |
28 |
|
inteq |
⊢ ( 𝐴 = ∅ → ∩ 𝐴 = ∩ ∅ ) |
29 |
28 9
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∩ 𝐴 = V ) |
30 |
29
|
difeq2d |
⊢ ( 𝐴 = ∅ → ( V ∖ ∩ 𝐴 ) = ( V ∖ V ) ) |
31 |
|
difid |
⊢ ( V ∖ V ) = ∅ |
32 |
30 31
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( V ∖ ∩ 𝐴 ) = ∅ ) |
33 |
32
|
uneq2d |
⊢ ( 𝐴 = ∅ → ( ∩ 𝐵 ∪ ( V ∖ ∩ 𝐴 ) ) = ( ∩ 𝐵 ∪ ∅ ) ) |
34 |
|
uncom |
⊢ ( ∩ 𝐵 ∪ ( V ∖ ∩ 𝐴 ) ) = ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) |
35 |
|
un0 |
⊢ ( ∩ 𝐵 ∪ ∅ ) = ∩ 𝐵 |
36 |
33 34 35
|
3eqtr3g |
⊢ ( 𝐴 = ∅ → ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) = ∩ 𝐵 ) |
37 |
36
|
adantl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) = ∩ 𝐵 ) |
38 |
37
|
ineq2d |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∩ 𝐵 ) ) |
39 |
27 38
|
eqtr4d |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) ) ) |
40 |
|
oevn0 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) |
41 |
|
int0el |
⊢ ( ∅ ∈ 𝐴 → ∩ 𝐴 = ∅ ) |
42 |
41
|
difeq2d |
⊢ ( ∅ ∈ 𝐴 → ( V ∖ ∩ 𝐴 ) = ( V ∖ ∅ ) ) |
43 |
|
dif0 |
⊢ ( V ∖ ∅ ) = V |
44 |
42 43
|
eqtrdi |
⊢ ( ∅ ∈ 𝐴 → ( V ∖ ∩ 𝐴 ) = V ) |
45 |
44
|
uneq2d |
⊢ ( ∅ ∈ 𝐴 → ( ∩ 𝐵 ∪ ( V ∖ ∩ 𝐴 ) ) = ( ∩ 𝐵 ∪ V ) ) |
46 |
|
unv |
⊢ ( ∩ 𝐵 ∪ V ) = V |
47 |
45 34 46
|
3eqtr3g |
⊢ ( ∅ ∈ 𝐴 → ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) = V ) |
48 |
47
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) = V ) |
49 |
48
|
ineq2d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ V ) ) |
50 |
|
inv1 |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ V ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) |
51 |
49 50
|
eqtr2di |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) ) ) |
52 |
40 51
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) ) ) |
53 |
39 52
|
oe0lem |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) ) ) |