| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oeord | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( 𝐴  ∈  𝐵  ↔  ( 𝐶  ↑o  𝐴 )  ∈  ( 𝐶  ↑o  𝐵 ) ) ) | 
						
							| 2 |  | oecan | ⊢ ( ( 𝐶  ∈  ( On  ∖  2o )  ∧  𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐶  ↑o  𝐴 )  =  ( 𝐶  ↑o  𝐵 )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 3 | 2 | 3coml | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( ( 𝐶  ↑o  𝐴 )  =  ( 𝐶  ↑o  𝐵 )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 4 | 3 | bicomd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( 𝐴  =  𝐵  ↔  ( 𝐶  ↑o  𝐴 )  =  ( 𝐶  ↑o  𝐵 ) ) ) | 
						
							| 5 | 1 4 | orbi12d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( ( 𝐴  ∈  𝐵  ∨  𝐴  =  𝐵 )  ↔  ( ( 𝐶  ↑o  𝐴 )  ∈  ( 𝐶  ↑o  𝐵 )  ∨  ( 𝐶  ↑o  𝐴 )  =  ( 𝐶  ↑o  𝐵 ) ) ) ) | 
						
							| 6 |  | onsseleq | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ⊆  𝐵  ↔  ( 𝐴  ∈  𝐵  ∨  𝐴  =  𝐵 ) ) ) | 
						
							| 7 | 6 | 3adant3 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( 𝐴  ⊆  𝐵  ↔  ( 𝐴  ∈  𝐵  ∨  𝐴  =  𝐵 ) ) ) | 
						
							| 8 |  | eldifi | ⊢ ( 𝐶  ∈  ( On  ∖  2o )  →  𝐶  ∈  On ) | 
						
							| 9 |  | id | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) ) | 
						
							| 10 |  | oecl | ⊢ ( ( 𝐶  ∈  On  ∧  𝐴  ∈  On )  →  ( 𝐶  ↑o  𝐴 )  ∈  On ) | 
						
							| 11 |  | oecl | ⊢ ( ( 𝐶  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐶  ↑o  𝐵 )  ∈  On ) | 
						
							| 12 | 10 11 | anim12dan | ⊢ ( ( 𝐶  ∈  On  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  →  ( ( 𝐶  ↑o  𝐴 )  ∈  On  ∧  ( 𝐶  ↑o  𝐵 )  ∈  On ) ) | 
						
							| 13 |  | onsseleq | ⊢ ( ( ( 𝐶  ↑o  𝐴 )  ∈  On  ∧  ( 𝐶  ↑o  𝐵 )  ∈  On )  →  ( ( 𝐶  ↑o  𝐴 )  ⊆  ( 𝐶  ↑o  𝐵 )  ↔  ( ( 𝐶  ↑o  𝐴 )  ∈  ( 𝐶  ↑o  𝐵 )  ∨  ( 𝐶  ↑o  𝐴 )  =  ( 𝐶  ↑o  𝐵 ) ) ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝐶  ∈  On  ∧  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) )  →  ( ( 𝐶  ↑o  𝐴 )  ⊆  ( 𝐶  ↑o  𝐵 )  ↔  ( ( 𝐶  ↑o  𝐴 )  ∈  ( 𝐶  ↑o  𝐵 )  ∨  ( 𝐶  ↑o  𝐴 )  =  ( 𝐶  ↑o  𝐵 ) ) ) ) | 
						
							| 15 | 8 9 14 | syl2anr | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( ( 𝐶  ↑o  𝐴 )  ⊆  ( 𝐶  ↑o  𝐵 )  ↔  ( ( 𝐶  ↑o  𝐴 )  ∈  ( 𝐶  ↑o  𝐵 )  ∨  ( 𝐶  ↑o  𝐴 )  =  ( 𝐶  ↑o  𝐵 ) ) ) ) | 
						
							| 16 | 15 | 3impa | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( ( 𝐶  ↑o  𝐴 )  ⊆  ( 𝐶  ↑o  𝐵 )  ↔  ( ( 𝐶  ↑o  𝐴 )  ∈  ( 𝐶  ↑o  𝐵 )  ∨  ( 𝐶  ↑o  𝐴 )  =  ( 𝐶  ↑o  𝐵 ) ) ) ) | 
						
							| 17 | 5 7 16 | 3bitr4d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( 𝐴  ⊆  𝐵  ↔  ( 𝐶  ↑o  𝐴 )  ⊆  ( 𝐶  ↑o  𝐵 ) ) ) |