| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oeord |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ) ) |
| 2 |
|
oecan |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐶 ↑o 𝐴 ) = ( 𝐶 ↑o 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| 3 |
2
|
3coml |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( ( 𝐶 ↑o 𝐴 ) = ( 𝐶 ↑o 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| 4 |
3
|
bicomd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴 = 𝐵 ↔ ( 𝐶 ↑o 𝐴 ) = ( 𝐶 ↑o 𝐵 ) ) ) |
| 5 |
1 4
|
orbi12d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ↔ ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ∨ ( 𝐶 ↑o 𝐴 ) = ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 6 |
|
onsseleq |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| 7 |
6
|
3adant3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| 8 |
|
eldifi |
⊢ ( 𝐶 ∈ ( On ∖ 2o ) → 𝐶 ∈ On ) |
| 9 |
|
id |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) |
| 10 |
|
oecl |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐶 ↑o 𝐴 ) ∈ On ) |
| 11 |
|
oecl |
⊢ ( ( 𝐶 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐶 ↑o 𝐵 ) ∈ On ) |
| 12 |
10 11
|
anim12dan |
⊢ ( ( 𝐶 ∈ On ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( ( 𝐶 ↑o 𝐴 ) ∈ On ∧ ( 𝐶 ↑o 𝐵 ) ∈ On ) ) |
| 13 |
|
onsseleq |
⊢ ( ( ( 𝐶 ↑o 𝐴 ) ∈ On ∧ ( 𝐶 ↑o 𝐵 ) ∈ On ) → ( ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ↔ ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ∨ ( 𝐶 ↑o 𝐴 ) = ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝐶 ∈ On ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ↔ ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ∨ ( 𝐶 ↑o 𝐴 ) = ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 15 |
8 9 14
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ↔ ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ∨ ( 𝐶 ↑o 𝐴 ) = ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 16 |
15
|
3impa |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ↔ ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ∨ ( 𝐶 ↑o 𝐴 ) = ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 17 |
5 7 16
|
3bitr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |