| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( 𝑥  =  ∅  →  𝑥  =  ∅ ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑥  =  ∅  →  ( 𝐴  ↑o  𝑥 )  =  ( 𝐴  ↑o  ∅ ) ) | 
						
							| 3 | 1 2 | sseq12d | ⊢ ( 𝑥  =  ∅  →  ( 𝑥  ⊆  ( 𝐴  ↑o  𝑥 )  ↔  ∅  ⊆  ( 𝐴  ↑o  ∅ ) ) ) | 
						
							| 4 |  | id | ⊢ ( 𝑥  =  𝑦  →  𝑥  =  𝑦 ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ↑o  𝑥 )  =  ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 6 | 4 5 | sseq12d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ⊆  ( 𝐴  ↑o  𝑥 )  ↔  𝑦  ⊆  ( 𝐴  ↑o  𝑦 ) ) ) | 
						
							| 7 |  | id | ⊢ ( 𝑥  =  suc  𝑦  →  𝑥  =  suc  𝑦 ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝐴  ↑o  𝑥 )  =  ( 𝐴  ↑o  suc  𝑦 ) ) | 
						
							| 9 | 7 8 | sseq12d | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝑥  ⊆  ( 𝐴  ↑o  𝑥 )  ↔  suc  𝑦  ⊆  ( 𝐴  ↑o  suc  𝑦 ) ) ) | 
						
							| 10 |  | id | ⊢ ( 𝑥  =  𝐵  →  𝑥  =  𝐵 ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴  ↑o  𝑥 )  =  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 12 | 10 11 | sseq12d | ⊢ ( 𝑥  =  𝐵  →  ( 𝑥  ⊆  ( 𝐴  ↑o  𝑥 )  ↔  𝐵  ⊆  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 13 |  | 0ss | ⊢ ∅  ⊆  ( 𝐴  ↑o  ∅ ) | 
						
							| 14 | 13 | a1i | ⊢ ( 𝐴  ∈  ( On  ∖  2o )  →  ∅  ⊆  ( 𝐴  ↑o  ∅ ) ) | 
						
							| 15 |  | eloni | ⊢ ( 𝑦  ∈  On  →  Ord  𝑦 ) | 
						
							| 16 |  | eldifi | ⊢ ( 𝐴  ∈  ( On  ∖  2o )  →  𝐴  ∈  On ) | 
						
							| 17 |  | oecl | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐴  ↑o  𝑦 )  ∈  On ) | 
						
							| 18 | 16 17 | sylan | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝑦  ∈  On )  →  ( 𝐴  ↑o  𝑦 )  ∈  On ) | 
						
							| 19 |  | eloni | ⊢ ( ( 𝐴  ↑o  𝑦 )  ∈  On  →  Ord  ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝑦  ∈  On )  →  Ord  ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 21 |  | ordsucsssuc | ⊢ ( ( Ord  𝑦  ∧  Ord  ( 𝐴  ↑o  𝑦 ) )  →  ( 𝑦  ⊆  ( 𝐴  ↑o  𝑦 )  ↔  suc  𝑦  ⊆  suc  ( 𝐴  ↑o  𝑦 ) ) ) | 
						
							| 22 | 15 20 21 | syl2an2 | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝑦  ∈  On )  →  ( 𝑦  ⊆  ( 𝐴  ↑o  𝑦 )  ↔  suc  𝑦  ⊆  suc  ( 𝐴  ↑o  𝑦 ) ) ) | 
						
							| 23 |  | onsuc | ⊢ ( 𝑦  ∈  On  →  suc  𝑦  ∈  On ) | 
						
							| 24 |  | oecl | ⊢ ( ( 𝐴  ∈  On  ∧  suc  𝑦  ∈  On )  →  ( 𝐴  ↑o  suc  𝑦 )  ∈  On ) | 
						
							| 25 | 16 23 24 | syl2an | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝑦  ∈  On )  →  ( 𝐴  ↑o  suc  𝑦 )  ∈  On ) | 
						
							| 26 |  | eloni | ⊢ ( ( 𝐴  ↑o  suc  𝑦 )  ∈  On  →  Ord  ( 𝐴  ↑o  suc  𝑦 ) ) | 
						
							| 27 | 25 26 | syl | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝑦  ∈  On )  →  Ord  ( 𝐴  ↑o  suc  𝑦 ) ) | 
						
							| 28 |  | id | ⊢ ( 𝐴  ∈  ( On  ∖  2o )  →  𝐴  ∈  ( On  ∖  2o ) ) | 
						
							| 29 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 30 | 29 | sucid | ⊢ 𝑦  ∈  suc  𝑦 | 
						
							| 31 |  | oeordi | ⊢ ( ( suc  𝑦  ∈  On  ∧  𝐴  ∈  ( On  ∖  2o ) )  →  ( 𝑦  ∈  suc  𝑦  →  ( 𝐴  ↑o  𝑦 )  ∈  ( 𝐴  ↑o  suc  𝑦 ) ) ) | 
						
							| 32 | 30 31 | mpi | ⊢ ( ( suc  𝑦  ∈  On  ∧  𝐴  ∈  ( On  ∖  2o ) )  →  ( 𝐴  ↑o  𝑦 )  ∈  ( 𝐴  ↑o  suc  𝑦 ) ) | 
						
							| 33 | 23 28 32 | syl2anr | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝑦  ∈  On )  →  ( 𝐴  ↑o  𝑦 )  ∈  ( 𝐴  ↑o  suc  𝑦 ) ) | 
						
							| 34 |  | ordsucss | ⊢ ( Ord  ( 𝐴  ↑o  suc  𝑦 )  →  ( ( 𝐴  ↑o  𝑦 )  ∈  ( 𝐴  ↑o  suc  𝑦 )  →  suc  ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐴  ↑o  suc  𝑦 ) ) ) | 
						
							| 35 | 27 33 34 | sylc | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝑦  ∈  On )  →  suc  ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐴  ↑o  suc  𝑦 ) ) | 
						
							| 36 |  | sstr2 | ⊢ ( suc  𝑦  ⊆  suc  ( 𝐴  ↑o  𝑦 )  →  ( suc  ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐴  ↑o  suc  𝑦 )  →  suc  𝑦  ⊆  ( 𝐴  ↑o  suc  𝑦 ) ) ) | 
						
							| 37 | 35 36 | syl5com | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝑦  ∈  On )  →  ( suc  𝑦  ⊆  suc  ( 𝐴  ↑o  𝑦 )  →  suc  𝑦  ⊆  ( 𝐴  ↑o  suc  𝑦 ) ) ) | 
						
							| 38 | 22 37 | sylbid | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝑦  ∈  On )  →  ( 𝑦  ⊆  ( 𝐴  ↑o  𝑦 )  →  suc  𝑦  ⊆  ( 𝐴  ↑o  suc  𝑦 ) ) ) | 
						
							| 39 | 38 | expcom | ⊢ ( 𝑦  ∈  On  →  ( 𝐴  ∈  ( On  ∖  2o )  →  ( 𝑦  ⊆  ( 𝐴  ↑o  𝑦 )  →  suc  𝑦  ⊆  ( 𝐴  ↑o  suc  𝑦 ) ) ) ) | 
						
							| 40 |  | dif20el | ⊢ ( 𝐴  ∈  ( On  ∖  2o )  →  ∅  ∈  𝐴 ) | 
						
							| 41 | 16 40 | jca | ⊢ ( 𝐴  ∈  ( On  ∖  2o )  →  ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) ) | 
						
							| 42 |  | ss2iun | ⊢ ( ∀ 𝑦  ∈  𝑥 𝑦  ⊆  ( 𝐴  ↑o  𝑦 )  →  ∪  𝑦  ∈  𝑥 𝑦  ⊆  ∪  𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 43 |  | limuni | ⊢ ( Lim  𝑥  →  𝑥  =  ∪  𝑥 ) | 
						
							| 44 |  | uniiun | ⊢ ∪  𝑥  =  ∪  𝑦  ∈  𝑥 𝑦 | 
						
							| 45 | 43 44 | eqtrdi | ⊢ ( Lim  𝑥  →  𝑥  =  ∪  𝑦  ∈  𝑥 𝑦 ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) )  →  𝑥  =  ∪  𝑦  ∈  𝑥 𝑦 ) | 
						
							| 47 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 48 |  | oelim | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝑥  ∈  V  ∧  Lim  𝑥 ) )  ∧  ∅  ∈  𝐴 )  →  ( 𝐴  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 49 | 47 48 | mpanlr1 | ⊢ ( ( ( 𝐴  ∈  On  ∧  Lim  𝑥 )  ∧  ∅  ∈  𝐴 )  →  ( 𝐴  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 50 | 49 | anasss | ⊢ ( ( 𝐴  ∈  On  ∧  ( Lim  𝑥  ∧  ∅  ∈  𝐴 ) )  →  ( 𝐴  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 51 | 50 | an12s | ⊢ ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) )  →  ( 𝐴  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 52 | 46 51 | sseq12d | ⊢ ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) )  →  ( 𝑥  ⊆  ( 𝐴  ↑o  𝑥 )  ↔  ∪  𝑦  ∈  𝑥 𝑦  ⊆  ∪  𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 ) ) ) | 
						
							| 53 | 42 52 | imbitrrid | ⊢ ( ( Lim  𝑥  ∧  ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 ) )  →  ( ∀ 𝑦  ∈  𝑥 𝑦  ⊆  ( 𝐴  ↑o  𝑦 )  →  𝑥  ⊆  ( 𝐴  ↑o  𝑥 ) ) ) | 
						
							| 54 | 53 | ex | ⊢ ( Lim  𝑥  →  ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 )  →  ( ∀ 𝑦  ∈  𝑥 𝑦  ⊆  ( 𝐴  ↑o  𝑦 )  →  𝑥  ⊆  ( 𝐴  ↑o  𝑥 ) ) ) ) | 
						
							| 55 | 41 54 | syl5 | ⊢ ( Lim  𝑥  →  ( 𝐴  ∈  ( On  ∖  2o )  →  ( ∀ 𝑦  ∈  𝑥 𝑦  ⊆  ( 𝐴  ↑o  𝑦 )  →  𝑥  ⊆  ( 𝐴  ↑o  𝑥 ) ) ) ) | 
						
							| 56 | 3 6 9 12 14 39 55 | tfinds3 | ⊢ ( 𝐵  ∈  On  →  ( 𝐴  ∈  ( On  ∖  2o )  →  𝐵  ⊆  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 57 | 56 | impcom | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  On )  →  𝐵  ⊆  ( 𝐴  ↑o  𝐵 ) ) |