| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eloni | ⊢ ( 𝐶  ∈  On  →  Ord  𝐶 ) | 
						
							| 2 |  | ordgt0ge1 | ⊢ ( Ord  𝐶  →  ( ∅  ∈  𝐶  ↔  1o  ⊆  𝐶 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐶  ∈  On  →  ( ∅  ∈  𝐶  ↔  1o  ⊆  𝐶 ) ) | 
						
							| 4 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 5 |  | onsseleq | ⊢ ( ( 1o  ∈  On  ∧  𝐶  ∈  On )  →  ( 1o  ⊆  𝐶  ↔  ( 1o  ∈  𝐶  ∨  1o  =  𝐶 ) ) ) | 
						
							| 6 | 4 5 | mpan | ⊢ ( 𝐶  ∈  On  →  ( 1o  ⊆  𝐶  ↔  ( 1o  ∈  𝐶  ∨  1o  =  𝐶 ) ) ) | 
						
							| 7 | 3 6 | bitrd | ⊢ ( 𝐶  ∈  On  →  ( ∅  ∈  𝐶  ↔  ( 1o  ∈  𝐶  ∨  1o  =  𝐶 ) ) ) | 
						
							| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ∅  ∈  𝐶  ↔  ( 1o  ∈  𝐶  ∨  1o  =  𝐶 ) ) ) | 
						
							| 9 |  | ondif2 | ⊢ ( 𝐶  ∈  ( On  ∖  2o )  ↔  ( 𝐶  ∈  On  ∧  1o  ∈  𝐶 ) ) | 
						
							| 10 |  | oeword | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( 𝐴  ⊆  𝐵  ↔  ( 𝐶  ↑o  𝐴 )  ⊆  ( 𝐶  ↑o  𝐵 ) ) ) | 
						
							| 11 | 10 | biimpd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  ( On  ∖  2o ) )  →  ( 𝐴  ⊆  𝐵  →  ( 𝐶  ↑o  𝐴 )  ⊆  ( 𝐶  ↑o  𝐵 ) ) ) | 
						
							| 12 | 11 | 3expia | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐶  ∈  ( On  ∖  2o )  →  ( 𝐴  ⊆  𝐵  →  ( 𝐶  ↑o  𝐴 )  ⊆  ( 𝐶  ↑o  𝐵 ) ) ) ) | 
						
							| 13 | 9 12 | biimtrrid | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐶  ∈  On  ∧  1o  ∈  𝐶 )  →  ( 𝐴  ⊆  𝐵  →  ( 𝐶  ↑o  𝐴 )  ⊆  ( 𝐶  ↑o  𝐵 ) ) ) ) | 
						
							| 14 | 13 | expd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐶  ∈  On  →  ( 1o  ∈  𝐶  →  ( 𝐴  ⊆  𝐵  →  ( 𝐶  ↑o  𝐴 )  ⊆  ( 𝐶  ↑o  𝐵 ) ) ) ) ) | 
						
							| 15 | 14 | 3impia | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 1o  ∈  𝐶  →  ( 𝐴  ⊆  𝐵  →  ( 𝐶  ↑o  𝐴 )  ⊆  ( 𝐶  ↑o  𝐵 ) ) ) ) | 
						
							| 16 |  | oe1m | ⊢ ( 𝐴  ∈  On  →  ( 1o  ↑o  𝐴 )  =  1o ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 1o  ↑o  𝐴 )  =  1o ) | 
						
							| 18 |  | oe1m | ⊢ ( 𝐵  ∈  On  →  ( 1o  ↑o  𝐵 )  =  1o ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 1o  ↑o  𝐵 )  =  1o ) | 
						
							| 20 | 17 19 | eqtr4d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 1o  ↑o  𝐴 )  =  ( 1o  ↑o  𝐵 ) ) | 
						
							| 21 |  | eqimss | ⊢ ( ( 1o  ↑o  𝐴 )  =  ( 1o  ↑o  𝐵 )  →  ( 1o  ↑o  𝐴 )  ⊆  ( 1o  ↑o  𝐵 ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 1o  ↑o  𝐴 )  ⊆  ( 1o  ↑o  𝐵 ) ) | 
						
							| 23 |  | oveq1 | ⊢ ( 1o  =  𝐶  →  ( 1o  ↑o  𝐴 )  =  ( 𝐶  ↑o  𝐴 ) ) | 
						
							| 24 |  | oveq1 | ⊢ ( 1o  =  𝐶  →  ( 1o  ↑o  𝐵 )  =  ( 𝐶  ↑o  𝐵 ) ) | 
						
							| 25 | 23 24 | sseq12d | ⊢ ( 1o  =  𝐶  →  ( ( 1o  ↑o  𝐴 )  ⊆  ( 1o  ↑o  𝐵 )  ↔  ( 𝐶  ↑o  𝐴 )  ⊆  ( 𝐶  ↑o  𝐵 ) ) ) | 
						
							| 26 | 22 25 | syl5ibcom | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 1o  =  𝐶  →  ( 𝐶  ↑o  𝐴 )  ⊆  ( 𝐶  ↑o  𝐵 ) ) ) | 
						
							| 27 | 26 | 3adant3 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 1o  =  𝐶  →  ( 𝐶  ↑o  𝐴 )  ⊆  ( 𝐶  ↑o  𝐵 ) ) ) | 
						
							| 28 | 27 | a1dd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 1o  =  𝐶  →  ( 𝐴  ⊆  𝐵  →  ( 𝐶  ↑o  𝐴 )  ⊆  ( 𝐶  ↑o  𝐵 ) ) ) ) | 
						
							| 29 | 15 28 | jaod | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( 1o  ∈  𝐶  ∨  1o  =  𝐶 )  →  ( 𝐴  ⊆  𝐵  →  ( 𝐶  ↑o  𝐴 )  ⊆  ( 𝐶  ↑o  𝐵 ) ) ) ) | 
						
							| 30 | 8 29 | sylbid | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ∅  ∈  𝐶  →  ( 𝐴  ⊆  𝐵  →  ( 𝐶  ↑o  𝐴 )  ⊆  ( 𝐶  ↑o  𝐵 ) ) ) ) | 
						
							| 31 | 30 | imp | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ∅  ∈  𝐶 )  →  ( 𝐴  ⊆  𝐵  →  ( 𝐶  ↑o  𝐴 )  ⊆  ( 𝐶  ↑o  𝐵 ) ) ) |