Step |
Hyp |
Ref |
Expression |
1 |
|
eloni |
⊢ ( 𝐶 ∈ On → Ord 𝐶 ) |
2 |
|
ordgt0ge1 |
⊢ ( Ord 𝐶 → ( ∅ ∈ 𝐶 ↔ 1o ⊆ 𝐶 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ 1o ⊆ 𝐶 ) ) |
4 |
|
1on |
⊢ 1o ∈ On |
5 |
|
onsseleq |
⊢ ( ( 1o ∈ On ∧ 𝐶 ∈ On ) → ( 1o ⊆ 𝐶 ↔ ( 1o ∈ 𝐶 ∨ 1o = 𝐶 ) ) ) |
6 |
4 5
|
mpan |
⊢ ( 𝐶 ∈ On → ( 1o ⊆ 𝐶 ↔ ( 1o ∈ 𝐶 ∨ 1o = 𝐶 ) ) ) |
7 |
3 6
|
bitrd |
⊢ ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ ( 1o ∈ 𝐶 ∨ 1o = 𝐶 ) ) ) |
8 |
7
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 ↔ ( 1o ∈ 𝐶 ∨ 1o = 𝐶 ) ) ) |
9 |
|
ondif2 |
⊢ ( 𝐶 ∈ ( On ∖ 2o ) ↔ ( 𝐶 ∈ On ∧ 1o ∈ 𝐶 ) ) |
10 |
|
oeword |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |
11 |
10
|
biimpd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |
12 |
11
|
3expia |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) |
13 |
9 12
|
syl5bir |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐶 ∈ On ∧ 1o ∈ 𝐶 ) → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) |
14 |
13
|
expd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐶 ∈ On → ( 1o ∈ 𝐶 → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) ) |
15 |
14
|
3impia |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 1o ∈ 𝐶 → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) |
16 |
|
oe1m |
⊢ ( 𝐴 ∈ On → ( 1o ↑o 𝐴 ) = 1o ) |
17 |
16
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1o ↑o 𝐴 ) = 1o ) |
18 |
|
oe1m |
⊢ ( 𝐵 ∈ On → ( 1o ↑o 𝐵 ) = 1o ) |
19 |
18
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1o ↑o 𝐵 ) = 1o ) |
20 |
17 19
|
eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1o ↑o 𝐴 ) = ( 1o ↑o 𝐵 ) ) |
21 |
|
eqimss |
⊢ ( ( 1o ↑o 𝐴 ) = ( 1o ↑o 𝐵 ) → ( 1o ↑o 𝐴 ) ⊆ ( 1o ↑o 𝐵 ) ) |
22 |
20 21
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1o ↑o 𝐴 ) ⊆ ( 1o ↑o 𝐵 ) ) |
23 |
|
oveq1 |
⊢ ( 1o = 𝐶 → ( 1o ↑o 𝐴 ) = ( 𝐶 ↑o 𝐴 ) ) |
24 |
|
oveq1 |
⊢ ( 1o = 𝐶 → ( 1o ↑o 𝐵 ) = ( 𝐶 ↑o 𝐵 ) ) |
25 |
23 24
|
sseq12d |
⊢ ( 1o = 𝐶 → ( ( 1o ↑o 𝐴 ) ⊆ ( 1o ↑o 𝐵 ) ↔ ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |
26 |
22 25
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1o = 𝐶 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |
27 |
26
|
3adant3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 1o = 𝐶 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |
28 |
27
|
a1dd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 1o = 𝐶 → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) |
29 |
15 28
|
jaod |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 1o ∈ 𝐶 ∨ 1o = 𝐶 ) → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) |
30 |
8 29
|
sylbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) |
31 |
30
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |