Metamath Proof Explorer


Theorem oewordi

Description: Weak ordering property of ordinal exponentiation. (Contributed by NM, 6-Jan-2005)

Ref Expression
Assertion oewordi ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴𝐵 → ( 𝐶o 𝐴 ) ⊆ ( 𝐶o 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 eloni ( 𝐶 ∈ On → Ord 𝐶 )
2 ordgt0ge1 ( Ord 𝐶 → ( ∅ ∈ 𝐶 ↔ 1o𝐶 ) )
3 1 2 syl ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ 1o𝐶 ) )
4 1on 1o ∈ On
5 onsseleq ( ( 1o ∈ On ∧ 𝐶 ∈ On ) → ( 1o𝐶 ↔ ( 1o𝐶 ∨ 1o = 𝐶 ) ) )
6 4 5 mpan ( 𝐶 ∈ On → ( 1o𝐶 ↔ ( 1o𝐶 ∨ 1o = 𝐶 ) ) )
7 3 6 bitrd ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ ( 1o𝐶 ∨ 1o = 𝐶 ) ) )
8 7 3ad2ant3 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 ↔ ( 1o𝐶 ∨ 1o = 𝐶 ) ) )
9 ondif2 ( 𝐶 ∈ ( On ∖ 2o ) ↔ ( 𝐶 ∈ On ∧ 1o𝐶 ) )
10 oeword ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴𝐵 ↔ ( 𝐶o 𝐴 ) ⊆ ( 𝐶o 𝐵 ) ) )
11 10 biimpd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴𝐵 → ( 𝐶o 𝐴 ) ⊆ ( 𝐶o 𝐵 ) ) )
12 11 3expia ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐴𝐵 → ( 𝐶o 𝐴 ) ⊆ ( 𝐶o 𝐵 ) ) ) )
13 9 12 syl5bir ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐶 ∈ On ∧ 1o𝐶 ) → ( 𝐴𝐵 → ( 𝐶o 𝐴 ) ⊆ ( 𝐶o 𝐵 ) ) ) )
14 13 expd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐶 ∈ On → ( 1o𝐶 → ( 𝐴𝐵 → ( 𝐶o 𝐴 ) ⊆ ( 𝐶o 𝐵 ) ) ) ) )
15 14 3impia ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 1o𝐶 → ( 𝐴𝐵 → ( 𝐶o 𝐴 ) ⊆ ( 𝐶o 𝐵 ) ) ) )
16 oe1m ( 𝐴 ∈ On → ( 1oo 𝐴 ) = 1o )
17 16 adantr ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1oo 𝐴 ) = 1o )
18 oe1m ( 𝐵 ∈ On → ( 1oo 𝐵 ) = 1o )
19 18 adantl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1oo 𝐵 ) = 1o )
20 17 19 eqtr4d ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1oo 𝐴 ) = ( 1oo 𝐵 ) )
21 eqimss ( ( 1oo 𝐴 ) = ( 1oo 𝐵 ) → ( 1oo 𝐴 ) ⊆ ( 1oo 𝐵 ) )
22 20 21 syl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1oo 𝐴 ) ⊆ ( 1oo 𝐵 ) )
23 oveq1 ( 1o = 𝐶 → ( 1oo 𝐴 ) = ( 𝐶o 𝐴 ) )
24 oveq1 ( 1o = 𝐶 → ( 1oo 𝐵 ) = ( 𝐶o 𝐵 ) )
25 23 24 sseq12d ( 1o = 𝐶 → ( ( 1oo 𝐴 ) ⊆ ( 1oo 𝐵 ) ↔ ( 𝐶o 𝐴 ) ⊆ ( 𝐶o 𝐵 ) ) )
26 22 25 syl5ibcom ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1o = 𝐶 → ( 𝐶o 𝐴 ) ⊆ ( 𝐶o 𝐵 ) ) )
27 26 3adant3 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 1o = 𝐶 → ( 𝐶o 𝐴 ) ⊆ ( 𝐶o 𝐵 ) ) )
28 27 a1dd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 1o = 𝐶 → ( 𝐴𝐵 → ( 𝐶o 𝐴 ) ⊆ ( 𝐶o 𝐵 ) ) ) )
29 15 28 jaod ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 1o𝐶 ∨ 1o = 𝐶 ) → ( 𝐴𝐵 → ( 𝐶o 𝐴 ) ⊆ ( 𝐶o 𝐵 ) ) ) )
30 8 29 sylbid ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 → ( 𝐴𝐵 → ( 𝐶o 𝐴 ) ⊆ ( 𝐶o 𝐵 ) ) ) )
31 30 imp ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴𝐵 → ( 𝐶o 𝐴 ) ⊆ ( 𝐶o 𝐵 ) ) )