Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o ∅ ) ) |
2 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐵 ↑o 𝑥 ) = ( 𝐵 ↑o ∅ ) ) |
3 |
1 2
|
sseq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ↔ ( 𝐴 ↑o ∅ ) ⊆ ( 𝐵 ↑o ∅ ) ) ) |
4 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝑦 ) ) |
5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ↑o 𝑥 ) = ( 𝐵 ↑o 𝑦 ) ) |
6 |
4 5
|
sseq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ↔ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o suc 𝑦 ) ) |
8 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 ↑o 𝑥 ) = ( 𝐵 ↑o suc 𝑦 ) ) |
9 |
7 8
|
sseq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ↔ ( 𝐴 ↑o suc 𝑦 ) ⊆ ( 𝐵 ↑o suc 𝑦 ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝐶 ) ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐵 ↑o 𝑥 ) = ( 𝐵 ↑o 𝐶 ) ) |
12 |
10 11
|
sseq12d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ↔ ( 𝐴 ↑o 𝐶 ) ⊆ ( 𝐵 ↑o 𝐶 ) ) ) |
13 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ On ) |
14 |
|
oe0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) = 1o ) |
15 |
13 14
|
syl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ↑o ∅ ) = 1o ) |
16 |
|
oe0 |
⊢ ( 𝐵 ∈ On → ( 𝐵 ↑o ∅ ) = 1o ) |
17 |
16
|
adantr |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐵 ↑o ∅ ) = 1o ) |
18 |
15 17
|
eqtr4d |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ↑o ∅ ) = ( 𝐵 ↑o ∅ ) ) |
19 |
|
eqimss |
⊢ ( ( 𝐴 ↑o ∅ ) = ( 𝐵 ↑o ∅ ) → ( 𝐴 ↑o ∅ ) ⊆ ( 𝐵 ↑o ∅ ) ) |
20 |
18 19
|
syl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ↑o ∅ ) ⊆ ( 𝐵 ↑o ∅ ) ) |
21 |
|
simpl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → 𝐵 ∈ On ) |
22 |
|
onelss |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
23 |
22
|
imp |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ⊆ 𝐵 ) |
24 |
13 21 23
|
jca31 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) ) |
25 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) |
26 |
25
|
3adant2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) |
27 |
|
oecl |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ↑o 𝑦 ) ∈ On ) |
28 |
27
|
3adant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ↑o 𝑦 ) ∈ On ) |
29 |
|
simp1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → 𝐴 ∈ On ) |
30 |
|
omwordri |
⊢ ( ( ( 𝐴 ↑o 𝑦 ) ∈ On ∧ ( 𝐵 ↑o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
31 |
26 28 29 30
|
syl3anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
32 |
31
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ) |
33 |
32
|
adantrl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ) |
34 |
|
omwordi |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ( 𝐵 ↑o 𝑦 ) ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) ) |
35 |
28 34
|
syld3an3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) ) |
36 |
35
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) |
37 |
36
|
adantrr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) → ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) |
38 |
33 37
|
sstrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) |
39 |
|
oesuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o suc 𝑦 ) = ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) |
40 |
39
|
3adant2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o suc 𝑦 ) = ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) |
41 |
40
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) → ( 𝐴 ↑o suc 𝑦 ) = ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) |
42 |
|
oesuc |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ↑o suc 𝑦 ) = ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) |
43 |
42
|
3adant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ↑o suc 𝑦 ) = ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) |
44 |
43
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) → ( 𝐵 ↑o suc 𝑦 ) = ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) |
45 |
38 41 44
|
3sstr4d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) → ( 𝐴 ↑o suc 𝑦 ) ⊆ ( 𝐵 ↑o suc 𝑦 ) ) |
46 |
45
|
exp520 |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( 𝐴 ⊆ 𝐵 → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o suc 𝑦 ) ⊆ ( 𝐵 ↑o suc 𝑦 ) ) ) ) ) ) |
47 |
46
|
com3r |
⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝐴 ⊆ 𝐵 → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o suc 𝑦 ) ⊆ ( 𝐵 ↑o suc 𝑦 ) ) ) ) ) ) |
48 |
47
|
imp4c |
⊢ ( 𝑦 ∈ On → ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o suc 𝑦 ) ⊆ ( 𝐵 ↑o suc 𝑦 ) ) ) ) |
49 |
24 48
|
syl5 |
⊢ ( 𝑦 ∈ On → ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o suc 𝑦 ) ⊆ ( 𝐵 ↑o suc 𝑦 ) ) ) ) |
50 |
|
vex |
⊢ 𝑥 ∈ V |
51 |
|
limelon |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ∈ On ) |
52 |
50 51
|
mpan |
⊢ ( Lim 𝑥 → 𝑥 ∈ On ) |
53 |
|
0ellim |
⊢ ( Lim 𝑥 → ∅ ∈ 𝑥 ) |
54 |
|
oe0m1 |
⊢ ( 𝑥 ∈ On → ( ∅ ∈ 𝑥 ↔ ( ∅ ↑o 𝑥 ) = ∅ ) ) |
55 |
54
|
biimpa |
⊢ ( ( 𝑥 ∈ On ∧ ∅ ∈ 𝑥 ) → ( ∅ ↑o 𝑥 ) = ∅ ) |
56 |
52 53 55
|
syl2anc |
⊢ ( Lim 𝑥 → ( ∅ ↑o 𝑥 ) = ∅ ) |
57 |
|
0ss |
⊢ ∅ ⊆ ( 𝐵 ↑o 𝑥 ) |
58 |
56 57
|
eqsstrdi |
⊢ ( Lim 𝑥 → ( ∅ ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) |
59 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝑥 ) = ( ∅ ↑o 𝑥 ) ) |
60 |
59
|
sseq1d |
⊢ ( 𝐴 = ∅ → ( ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ↔ ( ∅ ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) |
61 |
58 60
|
syl5ibr |
⊢ ( 𝐴 = ∅ → ( Lim 𝑥 → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) |
62 |
61
|
adantl |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ∧ 𝐴 = ∅ ) → ( Lim 𝑥 → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) |
63 |
62
|
a1dd |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ∧ 𝐴 = ∅ ) → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) ) |
64 |
|
ss2iun |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐵 ↑o 𝑦 ) ) |
65 |
|
oelim |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
66 |
50 65
|
mpanlr1 |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
67 |
66
|
an32s |
⊢ ( ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ∧ Lim 𝑥 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
68 |
67
|
adantllr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ Lim 𝑥 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
69 |
21
|
anim1i |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ∧ Lim 𝑥 ) → ( 𝐵 ∈ On ∧ Lim 𝑥 ) ) |
70 |
|
ne0i |
⊢ ( 𝐴 ∈ 𝐵 → 𝐵 ≠ ∅ ) |
71 |
|
on0eln0 |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
72 |
70 71
|
syl5ibr |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ∅ ∈ 𝐵 ) ) |
73 |
72
|
imp |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ∅ ∈ 𝐵 ) |
74 |
73
|
adantr |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ∧ Lim 𝑥 ) → ∅ ∈ 𝐵 ) |
75 |
|
oelim |
⊢ ( ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐵 ) → ( 𝐵 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ↑o 𝑦 ) ) |
76 |
50 75
|
mpanlr1 |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐵 ) → ( 𝐵 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ↑o 𝑦 ) ) |
77 |
69 74 76
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ∧ Lim 𝑥 ) → ( 𝐵 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ↑o 𝑦 ) ) |
78 |
77
|
ad4ant24 |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ Lim 𝑥 ) → ( 𝐵 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ↑o 𝑦 ) ) |
79 |
68 78
|
sseq12d |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ Lim 𝑥 ) → ( ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ↔ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐵 ↑o 𝑦 ) ) ) |
80 |
64 79
|
syl5ibr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ Lim 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) |
81 |
80
|
ex |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) ) |
82 |
63 81
|
oe0lem |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) ) |
83 |
13
|
ancri |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) ) |
84 |
82 83
|
syl11 |
⊢ ( Lim 𝑥 → ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) ) |
85 |
3 6 9 12 20 49 84
|
tfinds3 |
⊢ ( 𝐶 ∈ On → ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ↑o 𝐶 ) ⊆ ( 𝐵 ↑o 𝐶 ) ) ) |
86 |
85
|
expd |
⊢ ( 𝐶 ∈ On → ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( 𝐴 ↑o 𝐶 ) ⊆ ( 𝐵 ↑o 𝐶 ) ) ) ) |
87 |
86
|
impcom |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐴 ↑o 𝐶 ) ⊆ ( 𝐵 ↑o 𝐶 ) ) ) |