| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑥  =  ∅  →  ( 𝐴  ↑o  𝑥 )  =  ( 𝐴  ↑o  ∅ ) ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑥  =  ∅  →  ( 𝐵  ↑o  𝑥 )  =  ( 𝐵  ↑o  ∅ ) ) | 
						
							| 3 | 1 2 | sseq12d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝐴  ↑o  𝑥 )  ⊆  ( 𝐵  ↑o  𝑥 )  ↔  ( 𝐴  ↑o  ∅ )  ⊆  ( 𝐵  ↑o  ∅ ) ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ↑o  𝑥 )  =  ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐵  ↑o  𝑥 )  =  ( 𝐵  ↑o  𝑦 ) ) | 
						
							| 6 | 4 5 | sseq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐴  ↑o  𝑥 )  ⊆  ( 𝐵  ↑o  𝑥 )  ↔  ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 ) ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝐴  ↑o  𝑥 )  =  ( 𝐴  ↑o  suc  𝑦 ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝐵  ↑o  𝑥 )  =  ( 𝐵  ↑o  suc  𝑦 ) ) | 
						
							| 9 | 7 8 | sseq12d | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( 𝐴  ↑o  𝑥 )  ⊆  ( 𝐵  ↑o  𝑥 )  ↔  ( 𝐴  ↑o  suc  𝑦 )  ⊆  ( 𝐵  ↑o  suc  𝑦 ) ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑥  =  𝐶  →  ( 𝐴  ↑o  𝑥 )  =  ( 𝐴  ↑o  𝐶 ) ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑥  =  𝐶  →  ( 𝐵  ↑o  𝑥 )  =  ( 𝐵  ↑o  𝐶 ) ) | 
						
							| 12 | 10 11 | sseq12d | ⊢ ( 𝑥  =  𝐶  →  ( ( 𝐴  ↑o  𝑥 )  ⊆  ( 𝐵  ↑o  𝑥 )  ↔  ( 𝐴  ↑o  𝐶 )  ⊆  ( 𝐵  ↑o  𝐶 ) ) ) | 
						
							| 13 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 )  →  𝐴  ∈  On ) | 
						
							| 14 |  | oe0 | ⊢ ( 𝐴  ∈  On  →  ( 𝐴  ↑o  ∅ )  =  1o ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ↑o  ∅ )  =  1o ) | 
						
							| 16 |  | oe0 | ⊢ ( 𝐵  ∈  On  →  ( 𝐵  ↑o  ∅ )  =  1o ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 )  →  ( 𝐵  ↑o  ∅ )  =  1o ) | 
						
							| 18 | 15 17 | eqtr4d | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ↑o  ∅ )  =  ( 𝐵  ↑o  ∅ ) ) | 
						
							| 19 |  | eqimss | ⊢ ( ( 𝐴  ↑o  ∅ )  =  ( 𝐵  ↑o  ∅ )  →  ( 𝐴  ↑o  ∅ )  ⊆  ( 𝐵  ↑o  ∅ ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ↑o  ∅ )  ⊆  ( 𝐵  ↑o  ∅ ) ) | 
						
							| 21 |  | simpl | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 )  →  𝐵  ∈  On ) | 
						
							| 22 |  | onelss | ⊢ ( 𝐵  ∈  On  →  ( 𝐴  ∈  𝐵  →  𝐴  ⊆  𝐵 ) ) | 
						
							| 23 | 22 | imp | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 )  →  𝐴  ⊆  𝐵 ) | 
						
							| 24 | 13 21 23 | jca31 | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 )  →  ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐴  ⊆  𝐵 ) ) | 
						
							| 25 |  | oecl | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐴  ↑o  𝑦 )  ∈  On ) | 
						
							| 26 | 25 | 3adant2 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐴  ↑o  𝑦 )  ∈  On ) | 
						
							| 27 |  | oecl | ⊢ ( ( 𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐵  ↑o  𝑦 )  ∈  On ) | 
						
							| 28 | 27 | 3adant1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐵  ↑o  𝑦 )  ∈  On ) | 
						
							| 29 |  | simp1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  →  𝐴  ∈  On ) | 
						
							| 30 |  | omwordri | ⊢ ( ( ( 𝐴  ↑o  𝑦 )  ∈  On  ∧  ( 𝐵  ↑o  𝑦 )  ∈  On  ∧  𝐴  ∈  On )  →  ( ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 )  →  ( ( 𝐴  ↑o  𝑦 )  ·o  𝐴 )  ⊆  ( ( 𝐵  ↑o  𝑦 )  ·o  𝐴 ) ) ) | 
						
							| 31 | 26 28 29 30 | syl3anc | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 )  →  ( ( 𝐴  ↑o  𝑦 )  ·o  𝐴 )  ⊆  ( ( 𝐵  ↑o  𝑦 )  ·o  𝐴 ) ) ) | 
						
							| 32 | 31 | imp | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  ∧  ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 ) )  →  ( ( 𝐴  ↑o  𝑦 )  ·o  𝐴 )  ⊆  ( ( 𝐵  ↑o  𝑦 )  ·o  𝐴 ) ) | 
						
							| 33 | 32 | adantrl | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  ∧  ( 𝐴  ⊆  𝐵  ∧  ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 ) ) )  →  ( ( 𝐴  ↑o  𝑦 )  ·o  𝐴 )  ⊆  ( ( 𝐵  ↑o  𝑦 )  ·o  𝐴 ) ) | 
						
							| 34 |  | omwordi | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  ( 𝐵  ↑o  𝑦 )  ∈  On )  →  ( 𝐴  ⊆  𝐵  →  ( ( 𝐵  ↑o  𝑦 )  ·o  𝐴 )  ⊆  ( ( 𝐵  ↑o  𝑦 )  ·o  𝐵 ) ) ) | 
						
							| 35 | 28 34 | syld3an3 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐴  ⊆  𝐵  →  ( ( 𝐵  ↑o  𝑦 )  ·o  𝐴 )  ⊆  ( ( 𝐵  ↑o  𝑦 )  ·o  𝐵 ) ) ) | 
						
							| 36 | 35 | imp | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  ∧  𝐴  ⊆  𝐵 )  →  ( ( 𝐵  ↑o  𝑦 )  ·o  𝐴 )  ⊆  ( ( 𝐵  ↑o  𝑦 )  ·o  𝐵 ) ) | 
						
							| 37 | 36 | adantrr | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  ∧  ( 𝐴  ⊆  𝐵  ∧  ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 ) ) )  →  ( ( 𝐵  ↑o  𝑦 )  ·o  𝐴 )  ⊆  ( ( 𝐵  ↑o  𝑦 )  ·o  𝐵 ) ) | 
						
							| 38 | 33 37 | sstrd | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  ∧  ( 𝐴  ⊆  𝐵  ∧  ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 ) ) )  →  ( ( 𝐴  ↑o  𝑦 )  ·o  𝐴 )  ⊆  ( ( 𝐵  ↑o  𝑦 )  ·o  𝐵 ) ) | 
						
							| 39 |  | oesuc | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐴  ↑o  suc  𝑦 )  =  ( ( 𝐴  ↑o  𝑦 )  ·o  𝐴 ) ) | 
						
							| 40 | 39 | 3adant2 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐴  ↑o  suc  𝑦 )  =  ( ( 𝐴  ↑o  𝑦 )  ·o  𝐴 ) ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  ∧  ( 𝐴  ⊆  𝐵  ∧  ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 ) ) )  →  ( 𝐴  ↑o  suc  𝑦 )  =  ( ( 𝐴  ↑o  𝑦 )  ·o  𝐴 ) ) | 
						
							| 42 |  | oesuc | ⊢ ( ( 𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐵  ↑o  suc  𝑦 )  =  ( ( 𝐵  ↑o  𝑦 )  ·o  𝐵 ) ) | 
						
							| 43 | 42 | 3adant1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐵  ↑o  suc  𝑦 )  =  ( ( 𝐵  ↑o  𝑦 )  ·o  𝐵 ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  ∧  ( 𝐴  ⊆  𝐵  ∧  ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 ) ) )  →  ( 𝐵  ↑o  suc  𝑦 )  =  ( ( 𝐵  ↑o  𝑦 )  ·o  𝐵 ) ) | 
						
							| 45 | 38 41 44 | 3sstr4d | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑦  ∈  On )  ∧  ( 𝐴  ⊆  𝐵  ∧  ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 ) ) )  →  ( 𝐴  ↑o  suc  𝑦 )  ⊆  ( 𝐵  ↑o  suc  𝑦 ) ) | 
						
							| 46 | 45 | exp520 | ⊢ ( 𝐴  ∈  On  →  ( 𝐵  ∈  On  →  ( 𝑦  ∈  On  →  ( 𝐴  ⊆  𝐵  →  ( ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 )  →  ( 𝐴  ↑o  suc  𝑦 )  ⊆  ( 𝐵  ↑o  suc  𝑦 ) ) ) ) ) ) | 
						
							| 47 | 46 | com3r | ⊢ ( 𝑦  ∈  On  →  ( 𝐴  ∈  On  →  ( 𝐵  ∈  On  →  ( 𝐴  ⊆  𝐵  →  ( ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 )  →  ( 𝐴  ↑o  suc  𝑦 )  ⊆  ( 𝐵  ↑o  suc  𝑦 ) ) ) ) ) ) | 
						
							| 48 | 47 | imp4c | ⊢ ( 𝑦  ∈  On  →  ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐴  ⊆  𝐵 )  →  ( ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 )  →  ( 𝐴  ↑o  suc  𝑦 )  ⊆  ( 𝐵  ↑o  suc  𝑦 ) ) ) ) | 
						
							| 49 | 24 48 | syl5 | ⊢ ( 𝑦  ∈  On  →  ( ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 )  →  ( ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 )  →  ( 𝐴  ↑o  suc  𝑦 )  ⊆  ( 𝐵  ↑o  suc  𝑦 ) ) ) ) | 
						
							| 50 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 51 |  | limelon | ⊢ ( ( 𝑥  ∈  V  ∧  Lim  𝑥 )  →  𝑥  ∈  On ) | 
						
							| 52 | 50 51 | mpan | ⊢ ( Lim  𝑥  →  𝑥  ∈  On ) | 
						
							| 53 |  | 0ellim | ⊢ ( Lim  𝑥  →  ∅  ∈  𝑥 ) | 
						
							| 54 |  | oe0m1 | ⊢ ( 𝑥  ∈  On  →  ( ∅  ∈  𝑥  ↔  ( ∅  ↑o  𝑥 )  =  ∅ ) ) | 
						
							| 55 | 54 | biimpa | ⊢ ( ( 𝑥  ∈  On  ∧  ∅  ∈  𝑥 )  →  ( ∅  ↑o  𝑥 )  =  ∅ ) | 
						
							| 56 | 52 53 55 | syl2anc | ⊢ ( Lim  𝑥  →  ( ∅  ↑o  𝑥 )  =  ∅ ) | 
						
							| 57 |  | 0ss | ⊢ ∅  ⊆  ( 𝐵  ↑o  𝑥 ) | 
						
							| 58 | 56 57 | eqsstrdi | ⊢ ( Lim  𝑥  →  ( ∅  ↑o  𝑥 )  ⊆  ( 𝐵  ↑o  𝑥 ) ) | 
						
							| 59 |  | oveq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ↑o  𝑥 )  =  ( ∅  ↑o  𝑥 ) ) | 
						
							| 60 | 59 | sseq1d | ⊢ ( 𝐴  =  ∅  →  ( ( 𝐴  ↑o  𝑥 )  ⊆  ( 𝐵  ↑o  𝑥 )  ↔  ( ∅  ↑o  𝑥 )  ⊆  ( 𝐵  ↑o  𝑥 ) ) ) | 
						
							| 61 | 58 60 | imbitrrid | ⊢ ( 𝐴  =  ∅  →  ( Lim  𝑥  →  ( 𝐴  ↑o  𝑥 )  ⊆  ( 𝐵  ↑o  𝑥 ) ) ) | 
						
							| 62 | 61 | adantl | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 )  ∧  𝐴  =  ∅ )  →  ( Lim  𝑥  →  ( 𝐴  ↑o  𝑥 )  ⊆  ( 𝐵  ↑o  𝑥 ) ) ) | 
						
							| 63 | 62 | a1dd | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 )  ∧  𝐴  =  ∅ )  →  ( Lim  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 )  →  ( 𝐴  ↑o  𝑥 )  ⊆  ( 𝐵  ↑o  𝑥 ) ) ) ) | 
						
							| 64 |  | ss2iun | ⊢ ( ∀ 𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 )  →  ∪  𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 )  ⊆  ∪  𝑦  ∈  𝑥 ( 𝐵  ↑o  𝑦 ) ) | 
						
							| 65 |  | oelim | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝑥  ∈  V  ∧  Lim  𝑥 ) )  ∧  ∅  ∈  𝐴 )  →  ( 𝐴  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 66 | 50 65 | mpanlr1 | ⊢ ( ( ( 𝐴  ∈  On  ∧  Lim  𝑥 )  ∧  ∅  ∈  𝐴 )  →  ( 𝐴  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 67 | 66 | an32s | ⊢ ( ( ( 𝐴  ∈  On  ∧  ∅  ∈  𝐴 )  ∧  Lim  𝑥 )  →  ( 𝐴  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 68 | 67 | adantllr | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 ) )  ∧  ∅  ∈  𝐴 )  ∧  Lim  𝑥 )  →  ( 𝐴  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 ) ) | 
						
							| 69 | 21 | anim1i | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 )  ∧  Lim  𝑥 )  →  ( 𝐵  ∈  On  ∧  Lim  𝑥 ) ) | 
						
							| 70 |  | ne0i | ⊢ ( 𝐴  ∈  𝐵  →  𝐵  ≠  ∅ ) | 
						
							| 71 |  | on0eln0 | ⊢ ( 𝐵  ∈  On  →  ( ∅  ∈  𝐵  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 72 | 70 71 | imbitrrid | ⊢ ( 𝐵  ∈  On  →  ( 𝐴  ∈  𝐵  →  ∅  ∈  𝐵 ) ) | 
						
							| 73 | 72 | imp | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 )  →  ∅  ∈  𝐵 ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 )  ∧  Lim  𝑥 )  →  ∅  ∈  𝐵 ) | 
						
							| 75 |  | oelim | ⊢ ( ( ( 𝐵  ∈  On  ∧  ( 𝑥  ∈  V  ∧  Lim  𝑥 ) )  ∧  ∅  ∈  𝐵 )  →  ( 𝐵  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 𝐵  ↑o  𝑦 ) ) | 
						
							| 76 | 50 75 | mpanlr1 | ⊢ ( ( ( 𝐵  ∈  On  ∧  Lim  𝑥 )  ∧  ∅  ∈  𝐵 )  →  ( 𝐵  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 𝐵  ↑o  𝑦 ) ) | 
						
							| 77 | 69 74 76 | syl2anc | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 )  ∧  Lim  𝑥 )  →  ( 𝐵  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 𝐵  ↑o  𝑦 ) ) | 
						
							| 78 | 77 | ad4ant24 | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 ) )  ∧  ∅  ∈  𝐴 )  ∧  Lim  𝑥 )  →  ( 𝐵  ↑o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 𝐵  ↑o  𝑦 ) ) | 
						
							| 79 | 68 78 | sseq12d | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 ) )  ∧  ∅  ∈  𝐴 )  ∧  Lim  𝑥 )  →  ( ( 𝐴  ↑o  𝑥 )  ⊆  ( 𝐵  ↑o  𝑥 )  ↔  ∪  𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 )  ⊆  ∪  𝑦  ∈  𝑥 ( 𝐵  ↑o  𝑦 ) ) ) | 
						
							| 80 | 64 79 | imbitrrid | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 ) )  ∧  ∅  ∈  𝐴 )  ∧  Lim  𝑥 )  →  ( ∀ 𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 )  →  ( 𝐴  ↑o  𝑥 )  ⊆  ( 𝐵  ↑o  𝑥 ) ) ) | 
						
							| 81 | 80 | ex | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 ) )  ∧  ∅  ∈  𝐴 )  →  ( Lim  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 )  →  ( 𝐴  ↑o  𝑥 )  ⊆  ( 𝐵  ↑o  𝑥 ) ) ) ) | 
						
							| 82 | 63 81 | oe0lem | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 ) )  →  ( Lim  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 )  →  ( 𝐴  ↑o  𝑥 )  ⊆  ( 𝐵  ↑o  𝑥 ) ) ) ) | 
						
							| 83 | 13 | ancri | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 ) ) ) | 
						
							| 84 | 82 83 | syl11 | ⊢ ( Lim  𝑥  →  ( ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 )  →  ( ∀ 𝑦  ∈  𝑥 ( 𝐴  ↑o  𝑦 )  ⊆  ( 𝐵  ↑o  𝑦 )  →  ( 𝐴  ↑o  𝑥 )  ⊆  ( 𝐵  ↑o  𝑥 ) ) ) ) | 
						
							| 85 | 3 6 9 12 20 49 84 | tfinds3 | ⊢ ( 𝐶  ∈  On  →  ( ( 𝐵  ∈  On  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ↑o  𝐶 )  ⊆  ( 𝐵  ↑o  𝐶 ) ) ) | 
						
							| 86 | 85 | expd | ⊢ ( 𝐶  ∈  On  →  ( 𝐵  ∈  On  →  ( 𝐴  ∈  𝐵  →  ( 𝐴  ↑o  𝐶 )  ⊆  ( 𝐵  ↑o  𝐶 ) ) ) ) | 
						
							| 87 | 86 | impcom | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐴  ∈  𝐵  →  ( 𝐴  ↑o  𝐶 )  ⊆  ( 𝐵  ↑o  𝐶 ) ) ) |