Description: Left operation by a constant. (Contributed by Mario Carneiro, 24-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ofc1.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
ofc1.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
ofc1.3 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | ||
ofc1.4 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) = 𝐶 ) | ||
Assertion | ofc1 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f 𝑅 𝐹 ) ‘ 𝑋 ) = ( 𝐵 𝑅 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofc1.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
2 | ofc1.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
3 | ofc1.3 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
4 | ofc1.4 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) = 𝐶 ) | |
5 | fnconstg | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝐴 × { 𝐵 } ) Fn 𝐴 ) | |
6 | 2 5 | syl | ⊢ ( 𝜑 → ( 𝐴 × { 𝐵 } ) Fn 𝐴 ) |
7 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
8 | fvconst2g | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) = 𝐵 ) | |
9 | 2 8 | sylan | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) = 𝐵 ) |
10 | 6 3 1 1 7 9 4 | ofval | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f 𝑅 𝐹 ) ‘ 𝑋 ) = ( 𝐵 𝑅 𝐶 ) ) |