Metamath Proof Explorer


Theorem ofc1

Description: Left operation by a constant. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Hypotheses ofc1.1 ( 𝜑𝐴𝑉 )
ofc1.2 ( 𝜑𝐵𝑊 )
ofc1.3 ( 𝜑𝐹 Fn 𝐴 )
ofc1.4 ( ( 𝜑𝑋𝐴 ) → ( 𝐹𝑋 ) = 𝐶 )
Assertion ofc1 ( ( 𝜑𝑋𝐴 ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f 𝑅 𝐹 ) ‘ 𝑋 ) = ( 𝐵 𝑅 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ofc1.1 ( 𝜑𝐴𝑉 )
2 ofc1.2 ( 𝜑𝐵𝑊 )
3 ofc1.3 ( 𝜑𝐹 Fn 𝐴 )
4 ofc1.4 ( ( 𝜑𝑋𝐴 ) → ( 𝐹𝑋 ) = 𝐶 )
5 fnconstg ( 𝐵𝑊 → ( 𝐴 × { 𝐵 } ) Fn 𝐴 )
6 2 5 syl ( 𝜑 → ( 𝐴 × { 𝐵 } ) Fn 𝐴 )
7 inidm ( 𝐴𝐴 ) = 𝐴
8 fvconst2g ( ( 𝐵𝑊𝑋𝐴 ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) = 𝐵 )
9 2 8 sylan ( ( 𝜑𝑋𝐴 ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) = 𝐵 )
10 6 3 1 1 7 9 4 ofval ( ( 𝜑𝑋𝐴 ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f 𝑅 𝐹 ) ‘ 𝑋 ) = ( 𝐵 𝑅 𝐶 ) )