Step |
Hyp |
Ref |
Expression |
1 |
|
ofccat.1 |
⊢ ( 𝜑 → 𝐸 ∈ Word 𝑆 ) |
2 |
|
ofccat.2 |
⊢ ( 𝜑 → 𝐹 ∈ Word 𝑆 ) |
3 |
|
ofccat.3 |
⊢ ( 𝜑 → 𝐺 ∈ Word 𝑇 ) |
4 |
|
ofccat.4 |
⊢ ( 𝜑 → 𝐻 ∈ Word 𝑇 ) |
5 |
|
ofccat.5 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐺 ) ) |
6 |
|
ofccat.6 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝐻 ) ) |
7 |
|
wrdf |
⊢ ( 𝐸 ∈ Word 𝑆 → 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ 𝑆 ) |
8 |
|
ffn |
⊢ ( 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ 𝑆 → 𝐸 Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
9 |
1 7 8
|
3syl |
⊢ ( 𝜑 → 𝐸 Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
10 |
|
wrdf |
⊢ ( 𝐺 ∈ Word 𝑇 → 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ⟶ 𝑇 ) |
11 |
|
ffn |
⊢ ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ⟶ 𝑇 → 𝐺 Fn ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ) |
12 |
3 10 11
|
3syl |
⊢ ( 𝜑 → 𝐺 Fn ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ) |
13 |
5
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) = ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ) |
14 |
13
|
fneq2d |
⊢ ( 𝜑 → ( 𝐺 Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ↔ 𝐺 Fn ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ) ) |
15 |
12 14
|
mpbird |
⊢ ( 𝜑 → 𝐺 Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
16 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ∈ V ) |
17 |
|
inidm |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ∩ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐸 ) ) |
18 |
9 15 16 16 17
|
offn |
⊢ ( 𝜑 → ( 𝐸 ∘f 𝑅 𝐺 ) Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
19 |
|
hashfn |
⊢ ( ( 𝐸 ∘f 𝑅 𝐺 ) Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) → ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) ) |
21 |
|
wrdfin |
⊢ ( 𝐸 ∈ Word 𝑆 → 𝐸 ∈ Fin ) |
22 |
|
hashcl |
⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ 𝐸 ) ∈ ℕ0 ) |
23 |
1 21 22
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐸 ) ∈ ℕ0 ) |
24 |
|
hashfzo0 |
⊢ ( ( ♯ ‘ 𝐸 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) = ( ♯ ‘ 𝐸 ) ) |
25 |
23 24
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) = ( ♯ ‘ 𝐸 ) ) |
26 |
20 25
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) = ( ♯ ‘ 𝐸 ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) = ( ♯ ‘ 𝐸 ) ) |
28 |
27
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
29 |
28
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ↔ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) ) |
30 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → 𝐸 Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
31 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → 𝐺 Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
32 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ∈ V ) |
33 |
29
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
34 |
|
fnfvof |
⊢ ( ( ( 𝐸 Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ∧ 𝐺 Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) ∧ ( ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ∈ V ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) ) → ( ( 𝐸 ∘f 𝑅 𝐺 ) ‘ 𝑖 ) = ( ( 𝐸 ‘ 𝑖 ) 𝑅 ( 𝐺 ‘ 𝑖 ) ) ) |
35 |
30 31 32 33 34
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( ( 𝐸 ∘f 𝑅 𝐺 ) ‘ 𝑖 ) = ( ( 𝐸 ‘ 𝑖 ) 𝑅 ( 𝐺 ‘ 𝑖 ) ) ) |
36 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) = ( ♯ ‘ 𝐸 ) ) |
37 |
36
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) = ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) |
38 |
37
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) = ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) |
39 |
|
wrdf |
⊢ ( 𝐹 ∈ Word 𝑆 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆 ) |
40 |
|
ffn |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆 → 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
41 |
2 39 40
|
3syl |
⊢ ( 𝜑 → 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
42 |
41
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
43 |
|
wrdf |
⊢ ( 𝐻 ∈ Word 𝑇 → 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ 𝑇 ) |
44 |
|
ffn |
⊢ ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ 𝑇 → 𝐻 Fn ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) |
45 |
4 43 44
|
3syl |
⊢ ( 𝜑 → 𝐻 Fn ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) |
46 |
6
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) |
47 |
46
|
fneq2d |
⊢ ( 𝜑 → ( 𝐻 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ 𝐻 Fn ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) ) |
48 |
45 47
|
mpbird |
⊢ ( 𝜑 → 𝐻 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → 𝐻 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
50 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∈ V ) |
51 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) |
52 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) |
53 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
54 |
52 53
|
neleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
55 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( ♯ ‘ 𝐸 ) ∈ ℕ0 ) |
56 |
55
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( ♯ ‘ 𝐸 ) ∈ ℤ ) |
57 |
|
wrdfin |
⊢ ( 𝐹 ∈ Word 𝑆 → 𝐹 ∈ Fin ) |
58 |
|
hashcl |
⊢ ( 𝐹 ∈ Fin → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
59 |
2 57 58
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
60 |
59
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
61 |
60
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
62 |
|
fzocatel |
⊢ ( ( ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) ∧ ( ( ♯ ‘ 𝐸 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℤ ) ) → ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
63 |
51 54 56 61 62
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
64 |
|
fnfvof |
⊢ ( ( ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐻 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∈ V ∧ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) = ( ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) 𝑅 ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) |
65 |
42 49 50 63 64
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) = ( ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) 𝑅 ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) |
66 |
38 65
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) = ( ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) 𝑅 ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) |
67 |
29 35 66
|
ifbieq12d2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) , ( ( 𝐸 ∘f 𝑅 𝐺 ) ‘ 𝑖 ) , ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) ) = if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( ( 𝐸 ‘ 𝑖 ) 𝑅 ( 𝐺 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) 𝑅 ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) ) |
68 |
67
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) , ( ( 𝐸 ∘f 𝑅 𝐺 ) ‘ 𝑖 ) , ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( ( 𝐸 ‘ 𝑖 ) 𝑅 ( 𝐺 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) 𝑅 ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) ) ) |
69 |
|
ovex |
⊢ ( 𝐸 ∘f 𝑅 𝐺 ) ∈ V |
70 |
|
ovex |
⊢ ( 𝐹 ∘f 𝑅 𝐻 ) ∈ V |
71 |
|
ccatfval |
⊢ ( ( ( 𝐸 ∘f 𝑅 𝐺 ) ∈ V ∧ ( 𝐹 ∘f 𝑅 𝐻 ) ∈ V ) → ( ( 𝐸 ∘f 𝑅 𝐺 ) ++ ( 𝐹 ∘f 𝑅 𝐻 ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) + ( ♯ ‘ ( 𝐹 ∘f 𝑅 𝐻 ) ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) , ( ( 𝐸 ∘f 𝑅 𝐺 ) ‘ 𝑖 ) , ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) ) ) ) |
72 |
69 70 71
|
mp2an |
⊢ ( ( 𝐸 ∘f 𝑅 𝐺 ) ++ ( 𝐹 ∘f 𝑅 𝐻 ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) + ( ♯ ‘ ( 𝐹 ∘f 𝑅 𝐻 ) ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) , ( ( 𝐸 ∘f 𝑅 𝐺 ) ‘ 𝑖 ) , ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) ) ) |
73 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∈ V ) |
74 |
|
inidm |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∩ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) |
75 |
41 48 73 73 74
|
offn |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐻 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
76 |
|
hashfn |
⊢ ( ( 𝐹 ∘f 𝑅 𝐻 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ ( 𝐹 ∘f 𝑅 𝐻 ) ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
77 |
75 76
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐹 ∘f 𝑅 𝐻 ) ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
78 |
|
hashfzo0 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( ♯ ‘ 𝐹 ) ) |
79 |
59 78
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( ♯ ‘ 𝐹 ) ) |
80 |
77 79
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐹 ∘f 𝑅 𝐻 ) ) = ( ♯ ‘ 𝐹 ) ) |
81 |
26 80
|
oveq12d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) + ( ♯ ‘ ( 𝐹 ∘f 𝑅 𝐻 ) ) ) = ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) |
82 |
81
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) + ( ♯ ‘ ( 𝐹 ∘f 𝑅 𝐻 ) ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) |
83 |
82
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) + ( ♯ ‘ ( 𝐹 ∘f 𝑅 𝐻 ) ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) , ( ( 𝐸 ∘f 𝑅 𝐺 ) ‘ 𝑖 ) , ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) , ( ( 𝐸 ∘f 𝑅 𝐺 ) ‘ 𝑖 ) , ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) ) ) ) |
84 |
72 83
|
eqtrid |
⊢ ( 𝜑 → ( ( 𝐸 ∘f 𝑅 𝐺 ) ++ ( 𝐹 ∘f 𝑅 𝐻 ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) , ( ( 𝐸 ∘f 𝑅 𝐺 ) ‘ 𝑖 ) , ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) ) ) ) |
85 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ∈ V ) |
86 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑖 ) ∈ V |
87 |
|
fvex |
⊢ ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ∈ V |
88 |
86 87
|
ifex |
⊢ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ∈ V |
89 |
88
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ∈ V ) |
90 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑖 ) ∈ V |
91 |
|
fvex |
⊢ ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ∈ V |
92 |
90 91
|
ifex |
⊢ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ∈ V |
93 |
92
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ∈ V ) |
94 |
|
ccatfval |
⊢ ( ( 𝐸 ∈ Word 𝑆 ∧ 𝐹 ∈ Word 𝑆 ) → ( 𝐸 ++ 𝐹 ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) ) |
95 |
1 2 94
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ++ 𝐹 ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) ) |
96 |
|
ccatfval |
⊢ ( ( 𝐺 ∈ Word 𝑇 ∧ 𝐻 ∈ Word 𝑇 ) → ( 𝐺 ++ 𝐻 ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐺 ) + ( ♯ ‘ 𝐻 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ) ) |
97 |
3 4 96
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ++ 𝐻 ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐺 ) + ( ♯ ‘ 𝐻 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ) ) |
98 |
5 6
|
oveq12d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) = ( ( ♯ ‘ 𝐺 ) + ( ♯ ‘ 𝐻 ) ) ) |
99 |
98
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐺 ) + ( ♯ ‘ 𝐻 ) ) ) ) |
100 |
99
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐺 ) + ( ♯ ‘ 𝐻 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ) ) |
101 |
97 100
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐺 ++ 𝐻 ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ) ) |
102 |
85 89 93 95 101
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐸 ++ 𝐹 ) ∘f 𝑅 ( 𝐺 ++ 𝐻 ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ ( if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) 𝑅 if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ) ) ) |
103 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐺 ) ) |
104 |
103
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) = ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ) |
105 |
104
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ↔ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ) ) |
106 |
103
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑖 − ( ♯ ‘ 𝐸 ) ) = ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) |
107 |
106
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) = ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) |
108 |
105 107
|
ifbieq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) = if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ) |
109 |
108
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → ( if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) 𝑅 if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) = ( if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) 𝑅 if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ) ) |
110 |
109
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ ( if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) 𝑅 if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ ( if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) 𝑅 if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ) ) ) |
111 |
102 110
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐸 ++ 𝐹 ) ∘f 𝑅 ( 𝐺 ++ 𝐻 ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ ( if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) 𝑅 if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) ) ) |
112 |
|
ovif12 |
⊢ ( if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) 𝑅 if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) = if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( ( 𝐸 ‘ 𝑖 ) 𝑅 ( 𝐺 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) 𝑅 ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) |
113 |
112
|
mpteq2i |
⊢ ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ ( if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) 𝑅 if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( ( 𝐸 ‘ 𝑖 ) 𝑅 ( 𝐺 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) 𝑅 ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) ) |
114 |
111 113
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝐸 ++ 𝐹 ) ∘f 𝑅 ( 𝐺 ++ 𝐻 ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( ( 𝐸 ‘ 𝑖 ) 𝑅 ( 𝐺 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) 𝑅 ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) ) ) |
115 |
68 84 114
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 𝐸 ++ 𝐹 ) ∘f 𝑅 ( 𝐺 ++ 𝐻 ) ) = ( ( 𝐸 ∘f 𝑅 𝐺 ) ++ ( 𝐹 ∘f 𝑅 𝐻 ) ) ) |