| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ofco.1 | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 2 |  | ofco.2 | ⊢ ( 𝜑  →  𝐺  Fn  𝐵 ) | 
						
							| 3 |  | ofco.3 | ⊢ ( 𝜑  →  𝐻 : 𝐷 ⟶ 𝐶 ) | 
						
							| 4 |  | ofco.4 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | ofco.5 | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 6 |  | ofco.6 | ⊢ ( 𝜑  →  𝐷  ∈  𝑋 ) | 
						
							| 7 |  | ofco.7 | ⊢ ( 𝐴  ∩  𝐵 )  =  𝐶 | 
						
							| 8 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝐻 ‘ 𝑥 )  ∈  𝐶 ) | 
						
							| 9 | 3 | feqmptd | ⊢ ( 𝜑  →  𝐻  =  ( 𝑥  ∈  𝐷  ↦  ( 𝐻 ‘ 𝑥 ) ) ) | 
						
							| 10 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 11 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 12 | 1 2 4 5 7 10 11 | offval | ⊢ ( 𝜑  →  ( 𝐹  ∘f  𝑅 𝐺 )  =  ( 𝑦  ∈  𝐶  ↦  ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝐻 ‘ 𝑥 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝐻 ‘ 𝑥 )  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) | 
						
							| 15 | 13 14 | oveq12d | ⊢ ( 𝑦  =  ( 𝐻 ‘ 𝑥 )  →  ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐺 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) | 
						
							| 16 | 8 9 12 15 | fmptco | ⊢ ( 𝜑  →  ( ( 𝐹  ∘f  𝑅 𝐺 )  ∘  𝐻 )  =  ( 𝑥  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) | 
						
							| 17 |  | inss1 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐴 | 
						
							| 18 | 7 17 | eqsstrri | ⊢ 𝐶  ⊆  𝐴 | 
						
							| 19 |  | fss | ⊢ ( ( 𝐻 : 𝐷 ⟶ 𝐶  ∧  𝐶  ⊆  𝐴 )  →  𝐻 : 𝐷 ⟶ 𝐴 ) | 
						
							| 20 | 3 18 19 | sylancl | ⊢ ( 𝜑  →  𝐻 : 𝐷 ⟶ 𝐴 ) | 
						
							| 21 |  | fnfco | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐻 : 𝐷 ⟶ 𝐴 )  →  ( 𝐹  ∘  𝐻 )  Fn  𝐷 ) | 
						
							| 22 | 1 20 21 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐻 )  Fn  𝐷 ) | 
						
							| 23 |  | inss2 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐵 | 
						
							| 24 | 7 23 | eqsstrri | ⊢ 𝐶  ⊆  𝐵 | 
						
							| 25 |  | fss | ⊢ ( ( 𝐻 : 𝐷 ⟶ 𝐶  ∧  𝐶  ⊆  𝐵 )  →  𝐻 : 𝐷 ⟶ 𝐵 ) | 
						
							| 26 | 3 24 25 | sylancl | ⊢ ( 𝜑  →  𝐻 : 𝐷 ⟶ 𝐵 ) | 
						
							| 27 |  | fnfco | ⊢ ( ( 𝐺  Fn  𝐵  ∧  𝐻 : 𝐷 ⟶ 𝐵 )  →  ( 𝐺  ∘  𝐻 )  Fn  𝐷 ) | 
						
							| 28 | 2 26 27 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺  ∘  𝐻 )  Fn  𝐷 ) | 
						
							| 29 |  | inidm | ⊢ ( 𝐷  ∩  𝐷 )  =  𝐷 | 
						
							| 30 | 3 | ffnd | ⊢ ( 𝜑  →  𝐻  Fn  𝐷 ) | 
						
							| 31 |  | fvco2 | ⊢ ( ( 𝐻  Fn  𝐷  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) ) | 
						
							| 32 | 30 31 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) ) | 
						
							| 33 |  | fvco2 | ⊢ ( ( 𝐻  Fn  𝐷  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝐺  ∘  𝐻 ) ‘ 𝑥 )  =  ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) | 
						
							| 34 | 30 33 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝐺  ∘  𝐻 ) ‘ 𝑥 )  =  ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) | 
						
							| 35 | 22 28 6 6 29 32 34 | offval | ⊢ ( 𝜑  →  ( ( 𝐹  ∘  𝐻 )  ∘f  𝑅 ( 𝐺  ∘  𝐻 ) )  =  ( 𝑥  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) | 
						
							| 36 | 16 35 | eqtr4d | ⊢ ( 𝜑  →  ( ( 𝐹  ∘f  𝑅 𝐺 )  ∘  𝐻 )  =  ( ( 𝐹  ∘  𝐻 )  ∘f  𝑅 ( 𝐺  ∘  𝐻 ) ) ) |