Step |
Hyp |
Ref |
Expression |
1 |
|
simpr1 |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → Fun 𝐻 ) |
2 |
|
fvimacnvi |
⊢ ( ( Fun 𝐻 ∧ 𝑥 ∈ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) |
3 |
1 2
|
sylan |
⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) ∧ 𝑥 ∈ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) |
4 |
1
|
funfnd |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → 𝐻 Fn dom 𝐻 ) |
5 |
|
dffn5 |
⊢ ( 𝐻 Fn dom 𝐻 ↔ 𝐻 = ( 𝑥 ∈ dom 𝐻 ↦ ( 𝐻 ‘ 𝑥 ) ) ) |
6 |
4 5
|
sylib |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → 𝐻 = ( 𝑥 ∈ dom 𝐻 ↦ ( 𝐻 ‘ 𝑥 ) ) ) |
7 |
6
|
reseq1d |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( 𝐻 ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) = ( ( 𝑥 ∈ dom 𝐻 ↦ ( 𝐻 ‘ 𝑥 ) ) ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) ) |
8 |
|
cnvimass |
⊢ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ⊆ dom 𝐻 |
9 |
|
resmpt |
⊢ ( ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ⊆ dom 𝐻 → ( ( 𝑥 ∈ dom 𝐻 ↦ ( 𝐻 ‘ 𝑥 ) ) ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) = ( 𝑥 ∈ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ↦ ( 𝐻 ‘ 𝑥 ) ) ) |
10 |
8 9
|
ax-mp |
⊢ ( ( 𝑥 ∈ dom 𝐻 ↦ ( 𝐻 ‘ 𝑥 ) ) ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) = ( 𝑥 ∈ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ↦ ( 𝐻 ‘ 𝑥 ) ) |
11 |
7 10
|
eqtrdi |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( 𝐻 ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) = ( 𝑥 ∈ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ↦ ( 𝐻 ‘ 𝑥 ) ) ) |
12 |
|
offval3 |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑦 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐺 ‘ 𝑦 ) ) ) ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑦 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐺 ‘ 𝑦 ) ) ) ) |
14 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐻 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐻 ‘ 𝑥 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
16 |
14 15
|
oveq12d |
⊢ ( 𝑦 = ( 𝐻 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐺 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) |
17 |
3 11 13 16
|
fmptco |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ ( 𝐻 ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) ) = ( 𝑥 ∈ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ↦ ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
18 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ∈ V |
19 |
18
|
rgenw |
⊢ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ∈ V |
20 |
|
eqid |
⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
21 |
20
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ∈ V → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) Fn ( dom 𝐹 ∩ dom 𝐺 ) ) |
22 |
19 21
|
mp1i |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) Fn ( dom 𝐹 ∩ dom 𝐺 ) ) |
23 |
|
offval3 |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
25 |
24
|
fneq1d |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) Fn ( dom 𝐹 ∩ dom 𝐺 ) ↔ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) Fn ( dom 𝐹 ∩ dom 𝐺 ) ) ) |
26 |
22 25
|
mpbird |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) Fn ( dom 𝐹 ∩ dom 𝐺 ) ) |
27 |
26
|
fndmd |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → dom ( 𝐹 ∘f 𝑅 𝐺 ) = ( dom 𝐹 ∩ dom 𝐺 ) ) |
28 |
|
eqimss |
⊢ ( dom ( 𝐹 ∘f 𝑅 𝐺 ) = ( dom 𝐹 ∩ dom 𝐺 ) → dom ( 𝐹 ∘f 𝑅 𝐺 ) ⊆ ( dom 𝐹 ∩ dom 𝐺 ) ) |
29 |
|
cores2 |
⊢ ( dom ( 𝐹 ∘f 𝑅 𝐺 ) ⊆ ( dom 𝐹 ∩ dom 𝐺 ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ ◡ ( ◡ 𝐻 ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ) = ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ 𝐻 ) ) |
30 |
27 28 29
|
3syl |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ ◡ ( ◡ 𝐻 ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ) = ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ 𝐻 ) ) |
31 |
|
funcnvres2 |
⊢ ( Fun 𝐻 → ◡ ( ◡ 𝐻 ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝐻 ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) ) |
32 |
1 31
|
syl |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ◡ ( ◡ 𝐻 ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝐻 ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) ) |
33 |
32
|
coeq2d |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ ◡ ( ◡ 𝐻 ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ) = ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ ( 𝐻 ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) ) ) |
34 |
30 33
|
eqtr3d |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ 𝐻 ) = ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ ( 𝐻 ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) ) ) |
35 |
|
simpr2 |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( 𝐹 ∘ 𝐻 ) ∈ V ) |
36 |
|
simpr3 |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( 𝐺 ∘ 𝐻 ) ∈ V ) |
37 |
|
offval3 |
⊢ ( ( ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) → ( ( 𝐹 ∘ 𝐻 ) ∘f 𝑅 ( 𝐺 ∘ 𝐻 ) ) = ( 𝑥 ∈ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ↦ ( ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) ) ) ) |
38 |
35 36 37
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( ( 𝐹 ∘ 𝐻 ) ∘f 𝑅 ( 𝐺 ∘ 𝐻 ) ) = ( 𝑥 ∈ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ↦ ( ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) ) ) ) |
39 |
|
dmco |
⊢ dom ( 𝐹 ∘ 𝐻 ) = ( ◡ 𝐻 “ dom 𝐹 ) |
40 |
|
dmco |
⊢ dom ( 𝐺 ∘ 𝐻 ) = ( ◡ 𝐻 “ dom 𝐺 ) |
41 |
39 40
|
ineq12i |
⊢ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) = ( ( ◡ 𝐻 “ dom 𝐹 ) ∩ ( ◡ 𝐻 “ dom 𝐺 ) ) |
42 |
|
inpreima |
⊢ ( Fun 𝐻 → ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( ( ◡ 𝐻 “ dom 𝐹 ) ∩ ( ◡ 𝐻 “ dom 𝐺 ) ) ) |
43 |
1 42
|
syl |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( ( ◡ 𝐻 “ dom 𝐹 ) ∩ ( ◡ 𝐻 “ dom 𝐺 ) ) ) |
44 |
41 43
|
eqtr4id |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) = ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) |
45 |
|
simplr1 |
⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) ∧ 𝑥 ∈ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ) → Fun 𝐻 ) |
46 |
|
inss2 |
⊢ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ⊆ dom ( 𝐺 ∘ 𝐻 ) |
47 |
|
dmcoss |
⊢ dom ( 𝐺 ∘ 𝐻 ) ⊆ dom 𝐻 |
48 |
46 47
|
sstri |
⊢ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ⊆ dom 𝐻 |
49 |
48
|
a1i |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ⊆ dom 𝐻 ) |
50 |
49
|
sselda |
⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) ∧ 𝑥 ∈ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ) → 𝑥 ∈ dom 𝐻 ) |
51 |
|
fvco |
⊢ ( ( Fun 𝐻 ∧ 𝑥 ∈ dom 𝐻 ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
52 |
45 50 51
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) ∧ 𝑥 ∈ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
53 |
|
inss1 |
⊢ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ⊆ dom ( 𝐹 ∘ 𝐻 ) |
54 |
|
dmcoss |
⊢ dom ( 𝐹 ∘ 𝐻 ) ⊆ dom 𝐻 |
55 |
53 54
|
sstri |
⊢ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ⊆ dom 𝐻 |
56 |
55
|
a1i |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ⊆ dom 𝐻 ) |
57 |
56
|
sselda |
⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) ∧ 𝑥 ∈ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ) → 𝑥 ∈ dom 𝐻 ) |
58 |
|
fvco |
⊢ ( ( Fun 𝐻 ∧ 𝑥 ∈ dom 𝐻 ) → ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
59 |
45 57 58
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) ∧ 𝑥 ∈ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ) → ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
60 |
52 59
|
oveq12d |
⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) ∧ 𝑥 ∈ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ) → ( ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) |
61 |
44 60
|
mpteq12dva |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( 𝑥 ∈ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ↦ ( ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ↦ ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
62 |
38 61
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( ( 𝐹 ∘ 𝐻 ) ∘f 𝑅 ( 𝐺 ∘ 𝐻 ) ) = ( 𝑥 ∈ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ↦ ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
63 |
17 34 62
|
3eqtr4d |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ 𝐻 ) = ( ( 𝐹 ∘ 𝐻 ) ∘f 𝑅 ( 𝐺 ∘ 𝐻 ) ) ) |