| Step | Hyp | Ref | Expression | 
						
							| 1 |  | off.1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑇 ) )  →  ( 𝑥 𝑅 𝑦 )  ∈  𝑈 ) | 
						
							| 2 |  | off.2 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝑆 ) | 
						
							| 3 |  | off.3 | ⊢ ( 𝜑  →  𝐺 : 𝐵 ⟶ 𝑇 ) | 
						
							| 4 |  | off.4 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | off.5 | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 6 |  | off.6 | ⊢ ( 𝐴  ∩  𝐵 )  =  𝐶 | 
						
							| 7 | 2 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 8 | 3 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝐵 ) | 
						
							| 9 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 10 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 11 | 7 8 4 5 6 9 10 | offval | ⊢ ( 𝜑  →  ( 𝐹  ∘f  𝑅 𝐺 )  =  ( 𝑧  ∈  𝐶  ↦  ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 12 |  | inss1 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐴 | 
						
							| 13 | 6 12 | eqsstrri | ⊢ 𝐶  ⊆  𝐴 | 
						
							| 14 | 13 | sseli | ⊢ ( 𝑧  ∈  𝐶  →  𝑧  ∈  𝐴 ) | 
						
							| 15 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑆  ∧  𝑧  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑆 ) | 
						
							| 16 | 2 14 15 | syl2an | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐶 )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑆 ) | 
						
							| 17 |  | inss2 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐵 | 
						
							| 18 | 6 17 | eqsstrri | ⊢ 𝐶  ⊆  𝐵 | 
						
							| 19 | 18 | sseli | ⊢ ( 𝑧  ∈  𝐶  →  𝑧  ∈  𝐵 ) | 
						
							| 20 |  | ffvelcdm | ⊢ ( ( 𝐺 : 𝐵 ⟶ 𝑇  ∧  𝑧  ∈  𝐵 )  →  ( 𝐺 ‘ 𝑧 )  ∈  𝑇 ) | 
						
							| 21 | 3 19 20 | syl2an | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐶 )  →  ( 𝐺 ‘ 𝑧 )  ∈  𝑇 ) | 
						
							| 22 | 1 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑇 ( 𝑥 𝑅 𝑦 )  ∈  𝑈 ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐶 )  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑇 ( 𝑥 𝑅 𝑦 )  ∈  𝑈 ) | 
						
							| 24 |  | ovrspc2v | ⊢ ( ( ( ( 𝐹 ‘ 𝑧 )  ∈  𝑆  ∧  ( 𝐺 ‘ 𝑧 )  ∈  𝑇 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑇 ( 𝑥 𝑅 𝑦 )  ∈  𝑈 )  →  ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) )  ∈  𝑈 ) | 
						
							| 25 | 16 21 23 24 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) )  ∈  𝑈 ) | 
						
							| 26 | 11 25 | fmpt3d | ⊢ ( 𝜑  →  ( 𝐹  ∘f  𝑅 𝐺 ) : 𝐶 ⟶ 𝑈 ) |