Step |
Hyp |
Ref |
Expression |
1 |
|
off2.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) |
2 |
|
off2.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) |
3 |
|
off2.3 |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝑇 ) |
4 |
|
off2.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
off2.5 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
6 |
|
off2.6 |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = 𝐶 ) |
7 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
8 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
9 |
|
eqid |
⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∩ 𝐵 ) |
10 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
11 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
12 |
7 8 4 5 9 10 11
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑧 ∈ ( 𝐴 ∩ 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ) |
13 |
6
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 ∩ 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ) |
14 |
12 13
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ) |
15 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → 𝐹 : 𝐴 ⟶ 𝑆 ) |
16 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
17 |
6 16
|
eqsstrrdi |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
18 |
17
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ 𝐴 ) |
19 |
15 18
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑆 ) |
20 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → 𝐺 : 𝐵 ⟶ 𝑇 ) |
21 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
22 |
6 21
|
eqsstrrdi |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐵 ) |
23 |
22
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ 𝐵 ) |
24 |
20 23
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑇 ) |
25 |
1
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) |
27 |
|
ovrspc2v |
⊢ ( ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑆 ∧ ( 𝐺 ‘ 𝑧 ) ∈ 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) → ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ∈ 𝑈 ) |
28 |
19 24 26 27
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ∈ 𝑈 ) |
29 |
14 28
|
fmpt3d |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) : 𝐶 ⟶ 𝑈 ) |