Metamath Proof Explorer


Theorem off2

Description: The function operation produces a function - alternative form with all antecedents as deduction. (Contributed by Thierry Arnoux, 17-Feb-2017)

Ref Expression
Hypotheses off2.1 ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑇 ) ) → ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 )
off2.2 ( 𝜑𝐹 : 𝐴𝑆 )
off2.3 ( 𝜑𝐺 : 𝐵𝑇 )
off2.4 ( 𝜑𝐴𝑉 )
off2.5 ( 𝜑𝐵𝑊 )
off2.6 ( 𝜑 → ( 𝐴𝐵 ) = 𝐶 )
Assertion off2 ( 𝜑 → ( 𝐹f 𝑅 𝐺 ) : 𝐶𝑈 )

Proof

Step Hyp Ref Expression
1 off2.1 ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑇 ) ) → ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 )
2 off2.2 ( 𝜑𝐹 : 𝐴𝑆 )
3 off2.3 ( 𝜑𝐺 : 𝐵𝑇 )
4 off2.4 ( 𝜑𝐴𝑉 )
5 off2.5 ( 𝜑𝐵𝑊 )
6 off2.6 ( 𝜑 → ( 𝐴𝐵 ) = 𝐶 )
7 2 ffnd ( 𝜑𝐹 Fn 𝐴 )
8 3 ffnd ( 𝜑𝐺 Fn 𝐵 )
9 eqid ( 𝐴𝐵 ) = ( 𝐴𝐵 )
10 eqidd ( ( 𝜑𝑧𝐴 ) → ( 𝐹𝑧 ) = ( 𝐹𝑧 ) )
11 eqidd ( ( 𝜑𝑧𝐵 ) → ( 𝐺𝑧 ) = ( 𝐺𝑧 ) )
12 7 8 4 5 9 10 11 offval ( 𝜑 → ( 𝐹f 𝑅 𝐺 ) = ( 𝑧 ∈ ( 𝐴𝐵 ) ↦ ( ( 𝐹𝑧 ) 𝑅 ( 𝐺𝑧 ) ) ) )
13 6 mpteq1d ( 𝜑 → ( 𝑧 ∈ ( 𝐴𝐵 ) ↦ ( ( 𝐹𝑧 ) 𝑅 ( 𝐺𝑧 ) ) ) = ( 𝑧𝐶 ↦ ( ( 𝐹𝑧 ) 𝑅 ( 𝐺𝑧 ) ) ) )
14 12 13 eqtrd ( 𝜑 → ( 𝐹f 𝑅 𝐺 ) = ( 𝑧𝐶 ↦ ( ( 𝐹𝑧 ) 𝑅 ( 𝐺𝑧 ) ) ) )
15 2 adantr ( ( 𝜑𝑧𝐶 ) → 𝐹 : 𝐴𝑆 )
16 inss1 ( 𝐴𝐵 ) ⊆ 𝐴
17 6 16 eqsstrrdi ( 𝜑𝐶𝐴 )
18 17 sselda ( ( 𝜑𝑧𝐶 ) → 𝑧𝐴 )
19 15 18 ffvelrnd ( ( 𝜑𝑧𝐶 ) → ( 𝐹𝑧 ) ∈ 𝑆 )
20 3 adantr ( ( 𝜑𝑧𝐶 ) → 𝐺 : 𝐵𝑇 )
21 inss2 ( 𝐴𝐵 ) ⊆ 𝐵
22 6 21 eqsstrrdi ( 𝜑𝐶𝐵 )
23 22 sselda ( ( 𝜑𝑧𝐶 ) → 𝑧𝐵 )
24 20 23 ffvelrnd ( ( 𝜑𝑧𝐶 ) → ( 𝐺𝑧 ) ∈ 𝑇 )
25 1 ralrimivva ( 𝜑 → ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 )
26 25 adantr ( ( 𝜑𝑧𝐶 ) → ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 )
27 ovrspc2v ( ( ( ( 𝐹𝑧 ) ∈ 𝑆 ∧ ( 𝐺𝑧 ) ∈ 𝑇 ) ∧ ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) → ( ( 𝐹𝑧 ) 𝑅 ( 𝐺𝑧 ) ) ∈ 𝑈 )
28 19 24 26 27 syl21anc ( ( 𝜑𝑧𝐶 ) → ( ( 𝐹𝑧 ) 𝑅 ( 𝐺𝑧 ) ) ∈ 𝑈 )
29 14 28 fmpt3d ( 𝜑 → ( 𝐹f 𝑅 𝐺 ) : 𝐶𝑈 )