Step |
Hyp |
Ref |
Expression |
1 |
|
offval.1 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
2 |
|
offval.2 |
⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
3 |
|
offval.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
4 |
|
offval.4 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
5 |
|
offval.5 |
⊢ ( 𝐴 ∩ 𝐵 ) = 𝑆 |
6 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ∈ V |
7 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
8 |
6 7
|
fnmpti |
⊢ ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) Fn 𝑆 |
9 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
10 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
11 |
1 2 3 4 5 9 10
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
12 |
11
|
fneq1d |
⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑅 𝐺 ) Fn 𝑆 ↔ ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) Fn 𝑆 ) ) |
13 |
8 12
|
mpbiri |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) Fn 𝑆 ) |