Step |
Hyp |
Ref |
Expression |
1 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ( dom 𝐹 ∩ dom 𝐺 ) ∩ 𝐷 ) → 𝑥 ∈ 𝐷 ) |
2 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐷 → ( ( 𝐹 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
3 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐷 → ( ( 𝐺 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
4 |
2 3
|
oveq12d |
⊢ ( 𝑥 ∈ 𝐷 → ( ( ( 𝐹 ↾ 𝐷 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ↾ 𝐷 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
5 |
1 4
|
syl |
⊢ ( 𝑥 ∈ ( ( dom 𝐹 ∩ dom 𝐺 ) ∩ 𝐷 ) → ( ( ( 𝐹 ↾ 𝐷 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ↾ 𝐷 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
6 |
5
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( ( dom 𝐹 ∩ dom 𝐺 ) ∩ 𝐷 ) ↦ ( ( ( 𝐹 ↾ 𝐷 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ↾ 𝐷 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( ( dom 𝐹 ∩ dom 𝐺 ) ∩ 𝐷 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
7 |
|
inindi |
⊢ ( 𝐷 ∩ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( ( 𝐷 ∩ dom 𝐹 ) ∩ ( 𝐷 ∩ dom 𝐺 ) ) |
8 |
|
incom |
⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ∩ 𝐷 ) = ( 𝐷 ∩ ( dom 𝐹 ∩ dom 𝐺 ) ) |
9 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝐷 ) = ( 𝐷 ∩ dom 𝐹 ) |
10 |
|
dmres |
⊢ dom ( 𝐺 ↾ 𝐷 ) = ( 𝐷 ∩ dom 𝐺 ) |
11 |
9 10
|
ineq12i |
⊢ ( dom ( 𝐹 ↾ 𝐷 ) ∩ dom ( 𝐺 ↾ 𝐷 ) ) = ( ( 𝐷 ∩ dom 𝐹 ) ∩ ( 𝐷 ∩ dom 𝐺 ) ) |
12 |
7 8 11
|
3eqtr4ri |
⊢ ( dom ( 𝐹 ↾ 𝐷 ) ∩ dom ( 𝐺 ↾ 𝐷 ) ) = ( ( dom 𝐹 ∩ dom 𝐺 ) ∩ 𝐷 ) |
13 |
12
|
mpteq1i |
⊢ ( 𝑥 ∈ ( dom ( 𝐹 ↾ 𝐷 ) ∩ dom ( 𝐺 ↾ 𝐷 ) ) ↦ ( ( ( 𝐹 ↾ 𝐷 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ↾ 𝐷 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( ( dom 𝐹 ∩ dom 𝐺 ) ∩ 𝐷 ) ↦ ( ( ( 𝐹 ↾ 𝐷 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ↾ 𝐷 ) ‘ 𝑥 ) ) ) |
14 |
|
resmpt3 |
⊢ ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ↾ 𝐷 ) = ( 𝑥 ∈ ( ( dom 𝐹 ∩ dom 𝐺 ) ∩ 𝐷 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
15 |
6 13 14
|
3eqtr4ri |
⊢ ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ↾ 𝐷 ) = ( 𝑥 ∈ ( dom ( 𝐹 ↾ 𝐷 ) ∩ dom ( 𝐺 ↾ 𝐷 ) ) ↦ ( ( ( 𝐹 ↾ 𝐷 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ↾ 𝐷 ) ‘ 𝑥 ) ) ) |
16 |
|
offval3 |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
17 |
16
|
reseq1d |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ↾ 𝐷 ) = ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ↾ 𝐷 ) ) |
18 |
|
resexg |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ↾ 𝐷 ) ∈ V ) |
19 |
|
resexg |
⊢ ( 𝐺 ∈ 𝑊 → ( 𝐺 ↾ 𝐷 ) ∈ V ) |
20 |
|
offval3 |
⊢ ( ( ( 𝐹 ↾ 𝐷 ) ∈ V ∧ ( 𝐺 ↾ 𝐷 ) ∈ V ) → ( ( 𝐹 ↾ 𝐷 ) ∘f 𝑅 ( 𝐺 ↾ 𝐷 ) ) = ( 𝑥 ∈ ( dom ( 𝐹 ↾ 𝐷 ) ∩ dom ( 𝐺 ↾ 𝐷 ) ) ↦ ( ( ( 𝐹 ↾ 𝐷 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ↾ 𝐷 ) ‘ 𝑥 ) ) ) ) |
21 |
18 19 20
|
syl2an |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ↾ 𝐷 ) ∘f 𝑅 ( 𝐺 ↾ 𝐷 ) ) = ( 𝑥 ∈ ( dom ( 𝐹 ↾ 𝐷 ) ∩ dom ( 𝐺 ↾ 𝐷 ) ) ↦ ( ( ( 𝐹 ↾ 𝐷 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ↾ 𝐷 ) ‘ 𝑥 ) ) ) ) |
22 |
15 17 21
|
3eqtr4a |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ↾ 𝐷 ) = ( ( 𝐹 ↾ 𝐷 ) ∘f 𝑅 ( 𝐺 ↾ 𝐷 ) ) ) |