Metamath Proof Explorer


Theorem offun

Description: The function operation produces a function. (Contributed by SN, 23-Jul-2024)

Ref Expression
Hypotheses offun.1 ( 𝜑𝐹 Fn 𝐴 )
offun.2 ( 𝜑𝐺 Fn 𝐵 )
offun.3 ( 𝜑𝐴𝑉 )
offun.4 ( 𝜑𝐵𝑊 )
Assertion offun ( 𝜑 → Fun ( 𝐹f 𝑅 𝐺 ) )

Proof

Step Hyp Ref Expression
1 offun.1 ( 𝜑𝐹 Fn 𝐴 )
2 offun.2 ( 𝜑𝐺 Fn 𝐵 )
3 offun.3 ( 𝜑𝐴𝑉 )
4 offun.4 ( 𝜑𝐵𝑊 )
5 eqid ( 𝐴𝐵 ) = ( 𝐴𝐵 )
6 1 2 3 4 5 offn ( 𝜑 → ( 𝐹f 𝑅 𝐺 ) Fn ( 𝐴𝐵 ) )
7 fnfun ( ( 𝐹f 𝑅 𝐺 ) Fn ( 𝐴𝐵 ) → Fun ( 𝐹f 𝑅 𝐺 ) )
8 6 7 syl ( 𝜑 → Fun ( 𝐹f 𝑅 𝐺 ) )