Description: The function operation produces a function. (Contributed by SN, 23-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | offun.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
offun.2 | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) | ||
offun.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
offun.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
Assertion | offun | ⊢ ( 𝜑 → Fun ( 𝐹 ∘f 𝑅 𝐺 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offun.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
2 | offun.2 | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) | |
3 | offun.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
4 | offun.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
5 | eqid | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∩ 𝐵 ) | |
6 | 1 2 3 4 5 | offn | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) Fn ( 𝐴 ∩ 𝐵 ) ) |
7 | fnfun | ⊢ ( ( 𝐹 ∘f 𝑅 𝐺 ) Fn ( 𝐴 ∩ 𝐵 ) → Fun ( 𝐹 ∘f 𝑅 𝐺 ) ) | |
8 | 6 7 | syl | ⊢ ( 𝜑 → Fun ( 𝐹 ∘f 𝑅 𝐺 ) ) |