Description: The function operation produces a function. (Contributed by SN, 23-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | offun.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| offun.2 | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) | ||
| offun.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| offun.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| Assertion | offun | ⊢ ( 𝜑 → Fun ( 𝐹 ∘f 𝑅 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offun.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| 2 | offun.2 | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) | |
| 3 | offun.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 4 | offun.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 5 | eqid | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∩ 𝐵 ) | |
| 6 | 1 2 3 4 5 | offn | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) Fn ( 𝐴 ∩ 𝐵 ) ) |
| 7 | fnfun | ⊢ ( ( 𝐹 ∘f 𝑅 𝐺 ) Fn ( 𝐴 ∩ 𝐵 ) → Fun ( 𝐹 ∘f 𝑅 𝐺 ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → Fun ( 𝐹 ∘f 𝑅 𝐺 ) ) |