Step |
Hyp |
Ref |
Expression |
1 |
|
offval.1 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
2 |
|
offval.2 |
⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
3 |
|
offval.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
4 |
|
offval.4 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
5 |
|
offval.5 |
⊢ ( 𝐴 ∩ 𝐵 ) = 𝑆 |
6 |
|
offval.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
7 |
|
offval.7 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) = 𝐷 ) |
8 |
|
fnex |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐹 ∈ V ) |
9 |
1 3 8
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
10 |
|
fnex |
⊢ ( ( 𝐺 Fn 𝐵 ∧ 𝐵 ∈ 𝑊 ) → 𝐺 ∈ V ) |
11 |
2 4 10
|
syl2anc |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
12 |
1
|
fndmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
13 |
2
|
fndmd |
⊢ ( 𝜑 → dom 𝐺 = 𝐵 ) |
14 |
12 13
|
ineq12d |
⊢ ( 𝜑 → ( dom 𝐹 ∩ dom 𝐺 ) = ( 𝐴 ∩ 𝐵 ) ) |
15 |
14 5
|
eqtrdi |
⊢ ( 𝜑 → ( dom 𝐹 ∩ dom 𝐺 ) = 𝑆 ) |
16 |
15
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
17 |
|
inex1g |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
18 |
5 17
|
eqeltrrid |
⊢ ( 𝐴 ∈ 𝑉 → 𝑆 ∈ V ) |
19 |
|
mptexg |
⊢ ( 𝑆 ∈ V → ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) |
20 |
3 18 19
|
3syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) |
21 |
16 20
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) |
22 |
|
dmeq |
⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) |
23 |
|
dmeq |
⊢ ( 𝑔 = 𝐺 → dom 𝑔 = dom 𝐺 ) |
24 |
22 23
|
ineqan12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( dom 𝑓 ∩ dom 𝑔 ) = ( dom 𝐹 ∩ dom 𝐺 ) ) |
25 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
26 |
|
fveq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
27 |
25 26
|
oveqan12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
28 |
24 27
|
mpteq12dv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
29 |
|
df-of |
⊢ ∘f 𝑅 = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
30 |
28 29
|
ovmpoga |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
31 |
9 11 21 30
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
32 |
5
|
eleq2i |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ 𝑥 ∈ 𝑆 ) |
33 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
34 |
32 33
|
bitr3i |
⊢ ( 𝑥 ∈ 𝑆 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
35 |
6
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
36 |
7
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝐺 ‘ 𝑥 ) = 𝐷 ) |
37 |
35 36
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) = ( 𝐶 𝑅 𝐷 ) ) |
38 |
34 37
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) = ( 𝐶 𝑅 𝐷 ) ) |
39 |
38
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 𝐶 𝑅 𝐷 ) ) ) |
40 |
31 16 39
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ 𝑆 ↦ ( 𝐶 𝑅 𝐷 ) ) ) |