| Step |
Hyp |
Ref |
Expression |
| 1 |
|
offval2.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
offval2.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
| 3 |
|
offval2.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑋 ) |
| 4 |
|
offval2.4 |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 5 |
|
offval2.5 |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 6 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 8 |
7
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
| 9 |
6 8
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
| 10 |
4
|
fneq1d |
⊢ ( 𝜑 → ( 𝐹 Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) ) |
| 11 |
9 10
|
mpbird |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 12 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝑋 ) |
| 13 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 14 |
13
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝑋 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
| 15 |
12 14
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
| 16 |
5
|
fneq1d |
⊢ ( 𝜑 → ( 𝐺 Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ) |
| 17 |
15 16
|
mpbird |
⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
| 18 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
| 19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 20 |
19
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) |
| 21 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐺 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 22 |
21
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) |
| 23 |
11 17 1 1 18 20 22
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑦 ∈ 𝐴 ↦ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) ) |
| 24 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
| 25 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑅 |
| 26 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) |
| 27 |
24 25 26
|
nfov |
⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) |
| 28 |
|
nfcv |
⊢ Ⅎ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) |
| 29 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) |
| 31 |
29 30
|
oveq12d |
⊢ ( 𝑦 = 𝑥 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) = ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) ) |
| 32 |
27 28 31
|
cbvmpt |
⊢ ( 𝑦 ∈ 𝐴 ↦ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) ) |
| 33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 34 |
7
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 35 |
33 2 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 36 |
13
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 37 |
33 3 36
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 38 |
35 37
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) = ( 𝐵 𝑅 𝐶 ) ) |
| 39 |
38
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) |
| 40 |
32 39
|
eqtrid |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) |
| 41 |
23 40
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) |