Step |
Hyp |
Ref |
Expression |
1 |
|
offval2f.0 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
offval2f.a |
⊢ Ⅎ 𝑥 𝐴 |
3 |
|
offval2f.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
4 |
|
offval2f.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
5 |
|
offval2f.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑋 ) |
6 |
|
offval2f.4 |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
7 |
|
offval2f.5 |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
8 |
4
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑊 ) ) |
9 |
1 8
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ) |
10 |
2
|
fnmptf |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
12 |
6
|
fneq1d |
⊢ ( 𝜑 → ( 𝐹 Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) ) |
13 |
11 12
|
mpbird |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
14 |
5
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑋 ) ) |
15 |
1 14
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝑋 ) |
16 |
2
|
fnmptf |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝑋 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
18 |
7
|
fneq1d |
⊢ ( 𝜑 → ( 𝐺 Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ) |
19 |
17 18
|
mpbird |
⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
20 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
21 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
22 |
21
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) |
23 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐺 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
24 |
23
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) |
25 |
13 19 3 3 20 22 24
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑦 ∈ 𝐴 ↦ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) ) |
26 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
27 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
28 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑅 |
29 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) |
30 |
27 28 29
|
nfov |
⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) |
31 |
|
nfcv |
⊢ Ⅎ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) |
32 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
33 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) |
34 |
32 33
|
oveq12d |
⊢ ( 𝑦 = 𝑥 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) = ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) ) |
35 |
26 2 30 31 34
|
cbvmptf |
⊢ ( 𝑦 ∈ 𝐴 ↦ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) ) |
36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
37 |
2
|
fvmpt2f |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
38 |
36 4 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
39 |
2
|
fvmpt2f |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
40 |
36 5 39
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
41 |
38 40
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) = ( 𝐵 𝑅 𝐶 ) ) |
42 |
1 41
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) |
43 |
35 42
|
eqtrid |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) |
44 |
25 43
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) |