Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) |
2 |
1
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → 𝐹 ∈ V ) |
3 |
|
elex |
⊢ ( 𝐺 ∈ 𝑊 → 𝐺 ∈ V ) |
4 |
3
|
adantl |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → 𝐺 ∈ V ) |
5 |
|
dmexg |
⊢ ( 𝐹 ∈ 𝑉 → dom 𝐹 ∈ V ) |
6 |
|
inex1g |
⊢ ( dom 𝐹 ∈ V → ( dom 𝐹 ∩ dom 𝐺 ) ∈ V ) |
7 |
|
mptexg |
⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ∈ V → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) |
8 |
5 6 7
|
3syl |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) |
9 |
8
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) |
10 |
|
dmeq |
⊢ ( 𝑎 = 𝐹 → dom 𝑎 = dom 𝐹 ) |
11 |
|
dmeq |
⊢ ( 𝑏 = 𝐺 → dom 𝑏 = dom 𝐺 ) |
12 |
10 11
|
ineqan12d |
⊢ ( ( 𝑎 = 𝐹 ∧ 𝑏 = 𝐺 ) → ( dom 𝑎 ∩ dom 𝑏 ) = ( dom 𝐹 ∩ dom 𝐺 ) ) |
13 |
|
fveq1 |
⊢ ( 𝑎 = 𝐹 → ( 𝑎 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
14 |
|
fveq1 |
⊢ ( 𝑏 = 𝐺 → ( 𝑏 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
15 |
13 14
|
oveqan12d |
⊢ ( ( 𝑎 = 𝐹 ∧ 𝑏 = 𝐺 ) → ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
16 |
12 15
|
mpteq12dv |
⊢ ( ( 𝑎 = 𝐹 ∧ 𝑏 = 𝐺 ) → ( 𝑥 ∈ ( dom 𝑎 ∩ dom 𝑏 ) ↦ ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
17 |
|
df-of |
⊢ ∘f 𝑅 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑎 ∩ dom 𝑏 ) ↦ ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ) ) |
18 |
16 17
|
ovmpoga |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
19 |
2 4 9 18
|
syl3anc |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |