Metamath Proof Explorer


Theorem ofmpteq

Description: Value of a pointwise operation on two functions defined using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014)

Ref Expression
Assertion ofmpteq ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝐵 ) Fn 𝐴 ∧ ( 𝑥𝐴𝐶 ) Fn 𝐴 ) → ( ( 𝑥𝐴𝐵 ) ∘f 𝑅 ( 𝑥𝐴𝐶 ) ) = ( 𝑥𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝐵 ) Fn 𝐴 ∧ ( 𝑥𝐴𝐶 ) Fn 𝐴 ) → 𝐴𝑉 )
2 simpr ( ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝐵 ) Fn 𝐴 ∧ ( 𝑥𝐴𝐶 ) Fn 𝐴 ) ∧ 𝑎𝐴 ) → 𝑎𝐴 )
3 simpl2 ( ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝐵 ) Fn 𝐴 ∧ ( 𝑥𝐴𝐶 ) Fn 𝐴 ) ∧ 𝑎𝐴 ) → ( 𝑥𝐴𝐵 ) Fn 𝐴 )
4 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
5 4 mptfng ( ∀ 𝑥𝐴 𝐵 ∈ V ↔ ( 𝑥𝐴𝐵 ) Fn 𝐴 )
6 3 5 sylibr ( ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝐵 ) Fn 𝐴 ∧ ( 𝑥𝐴𝐶 ) Fn 𝐴 ) ∧ 𝑎𝐴 ) → ∀ 𝑥𝐴 𝐵 ∈ V )
7 nfcsb1v 𝑥 𝑎 / 𝑥 𝐵
8 7 nfel1 𝑥 𝑎 / 𝑥 𝐵 ∈ V
9 csbeq1a ( 𝑥 = 𝑎𝐵 = 𝑎 / 𝑥 𝐵 )
10 9 eleq1d ( 𝑥 = 𝑎 → ( 𝐵 ∈ V ↔ 𝑎 / 𝑥 𝐵 ∈ V ) )
11 8 10 rspc ( 𝑎𝐴 → ( ∀ 𝑥𝐴 𝐵 ∈ V → 𝑎 / 𝑥 𝐵 ∈ V ) )
12 2 6 11 sylc ( ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝐵 ) Fn 𝐴 ∧ ( 𝑥𝐴𝐶 ) Fn 𝐴 ) ∧ 𝑎𝐴 ) → 𝑎 / 𝑥 𝐵 ∈ V )
13 simpl3 ( ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝐵 ) Fn 𝐴 ∧ ( 𝑥𝐴𝐶 ) Fn 𝐴 ) ∧ 𝑎𝐴 ) → ( 𝑥𝐴𝐶 ) Fn 𝐴 )
14 eqid ( 𝑥𝐴𝐶 ) = ( 𝑥𝐴𝐶 )
15 14 mptfng ( ∀ 𝑥𝐴 𝐶 ∈ V ↔ ( 𝑥𝐴𝐶 ) Fn 𝐴 )
16 13 15 sylibr ( ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝐵 ) Fn 𝐴 ∧ ( 𝑥𝐴𝐶 ) Fn 𝐴 ) ∧ 𝑎𝐴 ) → ∀ 𝑥𝐴 𝐶 ∈ V )
17 nfcsb1v 𝑥 𝑎 / 𝑥 𝐶
18 17 nfel1 𝑥 𝑎 / 𝑥 𝐶 ∈ V
19 csbeq1a ( 𝑥 = 𝑎𝐶 = 𝑎 / 𝑥 𝐶 )
20 19 eleq1d ( 𝑥 = 𝑎 → ( 𝐶 ∈ V ↔ 𝑎 / 𝑥 𝐶 ∈ V ) )
21 18 20 rspc ( 𝑎𝐴 → ( ∀ 𝑥𝐴 𝐶 ∈ V → 𝑎 / 𝑥 𝐶 ∈ V ) )
22 2 16 21 sylc ( ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝐵 ) Fn 𝐴 ∧ ( 𝑥𝐴𝐶 ) Fn 𝐴 ) ∧ 𝑎𝐴 ) → 𝑎 / 𝑥 𝐶 ∈ V )
23 nfcv 𝑎 𝐵
24 23 7 9 cbvmpt ( 𝑥𝐴𝐵 ) = ( 𝑎𝐴 𝑎 / 𝑥 𝐵 )
25 24 a1i ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝐵 ) Fn 𝐴 ∧ ( 𝑥𝐴𝐶 ) Fn 𝐴 ) → ( 𝑥𝐴𝐵 ) = ( 𝑎𝐴 𝑎 / 𝑥 𝐵 ) )
26 nfcv 𝑎 𝐶
27 26 17 19 cbvmpt ( 𝑥𝐴𝐶 ) = ( 𝑎𝐴 𝑎 / 𝑥 𝐶 )
28 27 a1i ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝐵 ) Fn 𝐴 ∧ ( 𝑥𝐴𝐶 ) Fn 𝐴 ) → ( 𝑥𝐴𝐶 ) = ( 𝑎𝐴 𝑎 / 𝑥 𝐶 ) )
29 1 12 22 25 28 offval2 ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝐵 ) Fn 𝐴 ∧ ( 𝑥𝐴𝐶 ) Fn 𝐴 ) → ( ( 𝑥𝐴𝐵 ) ∘f 𝑅 ( 𝑥𝐴𝐶 ) ) = ( 𝑎𝐴 ↦ ( 𝑎 / 𝑥 𝐵 𝑅 𝑎 / 𝑥 𝐶 ) ) )
30 nfcv 𝑎 ( 𝐵 𝑅 𝐶 )
31 nfcv 𝑥 𝑅
32 7 31 17 nfov 𝑥 ( 𝑎 / 𝑥 𝐵 𝑅 𝑎 / 𝑥 𝐶 )
33 9 19 oveq12d ( 𝑥 = 𝑎 → ( 𝐵 𝑅 𝐶 ) = ( 𝑎 / 𝑥 𝐵 𝑅 𝑎 / 𝑥 𝐶 ) )
34 30 32 33 cbvmpt ( 𝑥𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) = ( 𝑎𝐴 ↦ ( 𝑎 / 𝑥 𝐵 𝑅 𝑎 / 𝑥 𝐶 ) )
35 29 34 eqtr4di ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝐵 ) Fn 𝐴 ∧ ( 𝑥𝐴𝐶 ) Fn 𝐴 ) → ( ( 𝑥𝐴𝐵 ) ∘f 𝑅 ( 𝑥𝐴𝐶 ) ) = ( 𝑥𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) )