| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  Fn  𝐴 )  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | simpr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  𝑎  ∈  𝐴 ) | 
						
							| 3 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴 ) | 
						
							| 4 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 5 | 4 | mptfng | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  V  ↔  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴 ) | 
						
							| 6 | 3 5 | sylibr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  ∀ 𝑥  ∈  𝐴 𝐵  ∈  V ) | 
						
							| 7 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑎  /  𝑥 ⦌ 𝐵 | 
						
							| 8 | 7 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑎  /  𝑥 ⦌ 𝐵  ∈  V | 
						
							| 9 |  | csbeq1a | ⊢ ( 𝑥  =  𝑎  →  𝐵  =  ⦋ 𝑎  /  𝑥 ⦌ 𝐵 ) | 
						
							| 10 | 9 | eleq1d | ⊢ ( 𝑥  =  𝑎  →  ( 𝐵  ∈  V  ↔  ⦋ 𝑎  /  𝑥 ⦌ 𝐵  ∈  V ) ) | 
						
							| 11 | 8 10 | rspc | ⊢ ( 𝑎  ∈  𝐴  →  ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  V  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐵  ∈  V ) ) | 
						
							| 12 | 2 6 11 | sylc | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐵  ∈  V ) | 
						
							| 13 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  Fn  𝐴 ) | 
						
							| 14 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐶 )  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) | 
						
							| 15 | 14 | mptfng | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  V  ↔  ( 𝑥  ∈  𝐴  ↦  𝐶 )  Fn  𝐴 ) | 
						
							| 16 | 13 15 | sylibr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  ∀ 𝑥  ∈  𝐴 𝐶  ∈  V ) | 
						
							| 17 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑎  /  𝑥 ⦌ 𝐶 | 
						
							| 18 | 17 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑎  /  𝑥 ⦌ 𝐶  ∈  V | 
						
							| 19 |  | csbeq1a | ⊢ ( 𝑥  =  𝑎  →  𝐶  =  ⦋ 𝑎  /  𝑥 ⦌ 𝐶 ) | 
						
							| 20 | 19 | eleq1d | ⊢ ( 𝑥  =  𝑎  →  ( 𝐶  ∈  V  ↔  ⦋ 𝑎  /  𝑥 ⦌ 𝐶  ∈  V ) ) | 
						
							| 21 | 18 20 | rspc | ⊢ ( 𝑎  ∈  𝐴  →  ( ∀ 𝑥  ∈  𝐴 𝐶  ∈  V  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐶  ∈  V ) ) | 
						
							| 22 | 2 16 21 | sylc | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐶  ∈  V ) | 
						
							| 23 |  | nfcv | ⊢ Ⅎ 𝑎 𝐵 | 
						
							| 24 | 23 7 9 | cbvmpt | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑎  ∈  𝐴  ↦  ⦋ 𝑎  /  𝑥 ⦌ 𝐵 ) | 
						
							| 25 | 24 | a1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  Fn  𝐴 )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑎  ∈  𝐴  ↦  ⦋ 𝑎  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 26 |  | nfcv | ⊢ Ⅎ 𝑎 𝐶 | 
						
							| 27 | 26 17 19 | cbvmpt | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐶 )  =  ( 𝑎  ∈  𝐴  ↦  ⦋ 𝑎  /  𝑥 ⦌ 𝐶 ) | 
						
							| 28 | 27 | a1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  Fn  𝐴 )  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  =  ( 𝑎  ∈  𝐴  ↦  ⦋ 𝑎  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 29 | 1 12 22 25 28 | offval2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  Fn  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∘f  𝑅 ( 𝑥  ∈  𝐴  ↦  𝐶 ) )  =  ( 𝑎  ∈  𝐴  ↦  ( ⦋ 𝑎  /  𝑥 ⦌ 𝐵 𝑅 ⦋ 𝑎  /  𝑥 ⦌ 𝐶 ) ) ) | 
						
							| 30 |  | nfcv | ⊢ Ⅎ 𝑎 ( 𝐵 𝑅 𝐶 ) | 
						
							| 31 |  | nfcv | ⊢ Ⅎ 𝑥 𝑅 | 
						
							| 32 | 7 31 17 | nfov | ⊢ Ⅎ 𝑥 ( ⦋ 𝑎  /  𝑥 ⦌ 𝐵 𝑅 ⦋ 𝑎  /  𝑥 ⦌ 𝐶 ) | 
						
							| 33 | 9 19 | oveq12d | ⊢ ( 𝑥  =  𝑎  →  ( 𝐵 𝑅 𝐶 )  =  ( ⦋ 𝑎  /  𝑥 ⦌ 𝐵 𝑅 ⦋ 𝑎  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 34 | 30 32 33 | cbvmpt | ⊢ ( 𝑥  ∈  𝐴  ↦  ( 𝐵 𝑅 𝐶 ) )  =  ( 𝑎  ∈  𝐴  ↦  ( ⦋ 𝑎  /  𝑥 ⦌ 𝐵 𝑅 ⦋ 𝑎  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 35 | 29 34 | eqtr4di | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  Fn  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∘f  𝑅 ( 𝑥  ∈  𝐴  ↦  𝐶 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐵 𝑅 𝐶 ) ) ) |