Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) → 𝐴 ∈ 𝑉 ) |
2 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ 𝐴 ) |
3 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
4 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
5 |
4
|
mptfng |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
6 |
3 5
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
7 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 |
8 |
7
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ V |
9 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑎 → 𝐵 = ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
10 |
9
|
eleq1d |
⊢ ( 𝑥 = 𝑎 → ( 𝐵 ∈ V ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ V ) ) |
11 |
8 10
|
rspc |
⊢ ( 𝑎 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ V ) ) |
12 |
2 6 11
|
sylc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∈ V ) |
13 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
14 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
15 |
14
|
mptfng |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
16 |
13 15
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ) |
17 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
18 |
17
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ V |
19 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑎 → 𝐶 = ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
20 |
19
|
eleq1d |
⊢ ( 𝑥 = 𝑎 → ( 𝐶 ∈ V ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ V ) ) |
21 |
18 20
|
rspc |
⊢ ( 𝑎 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ V ) ) |
22 |
2 16 21
|
sylc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ V ) |
23 |
|
nfcv |
⊢ Ⅎ 𝑎 𝐵 |
24 |
23 7 9
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑎 ∈ 𝐴 ↦ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
25 |
24
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑎 ∈ 𝐴 ↦ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
26 |
|
nfcv |
⊢ Ⅎ 𝑎 𝐶 |
27 |
26 17 19
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑎 ∈ 𝐴 ↦ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
28 |
27
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑎 ∈ 𝐴 ↦ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) ) |
29 |
1 12 22 25 28
|
offval2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∘f 𝑅 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑎 ∈ 𝐴 ↦ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 𝑅 ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) ) ) |
30 |
|
nfcv |
⊢ Ⅎ 𝑎 ( 𝐵 𝑅 𝐶 ) |
31 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑅 |
32 |
7 31 17
|
nfov |
⊢ Ⅎ 𝑥 ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 𝑅 ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
33 |
9 19
|
oveq12d |
⊢ ( 𝑥 = 𝑎 → ( 𝐵 𝑅 𝐶 ) = ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 𝑅 ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) ) |
34 |
30 32 33
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) = ( 𝑎 ∈ 𝐴 ↦ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 𝑅 ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) ) |
35 |
29 34
|
eqtr4di |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∘f 𝑅 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) |