Metamath Proof Explorer


Theorem ofmres

Description: Equivalent expressions for a restriction of the function operation map. Unlike oF R which is a proper class, ` ( oF R |`( A X. B ) ) can be a set by ofmresex , allowing it to be used as a function or structure argument. By ofmresval , the restricted operation map values are the same as the original values, allowing theorems for oF R to be reused. (Contributed by NM, 20-Oct-2014)

Ref Expression
Assertion ofmres ( ∘f 𝑅 ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑓𝐴 , 𝑔𝐵 ↦ ( 𝑓f 𝑅 𝑔 ) )

Proof

Step Hyp Ref Expression
1 ssv 𝐴 ⊆ V
2 ssv 𝐵 ⊆ V
3 resmpo ( ( 𝐴 ⊆ V ∧ 𝐵 ⊆ V ) → ( ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ) ) ) ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑓𝐴 , 𝑔𝐵 ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ) ) ) )
4 1 2 3 mp2an ( ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ) ) ) ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑓𝐴 , 𝑔𝐵 ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ) ) )
5 df-of f 𝑅 = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ) ) )
6 5 reseq1i ( ∘f 𝑅 ↾ ( 𝐴 × 𝐵 ) ) = ( ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ) ) ) ↾ ( 𝐴 × 𝐵 ) )
7 eqid 𝐴 = 𝐴
8 eqid 𝐵 = 𝐵
9 vex 𝑓 ∈ V
10 vex 𝑔 ∈ V
11 9 dmex dom 𝑓 ∈ V
12 11 inex1 ( dom 𝑓 ∩ dom 𝑔 ) ∈ V
13 12 mptex ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ) ) ∈ V
14 5 ovmpt4g ( ( 𝑓 ∈ V ∧ 𝑔 ∈ V ∧ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ) ) ∈ V ) → ( 𝑓f 𝑅 𝑔 ) = ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ) ) )
15 9 10 13 14 mp3an ( 𝑓f 𝑅 𝑔 ) = ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ) )
16 7 8 15 mpoeq123i ( 𝑓𝐴 , 𝑔𝐵 ↦ ( 𝑓f 𝑅 𝑔 ) ) = ( 𝑓𝐴 , 𝑔𝐵 ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ) ) )
17 4 6 16 3eqtr4i ( ∘f 𝑅 ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑓𝐴 , 𝑔𝐵 ↦ ( 𝑓f 𝑅 𝑔 ) )