Step |
Hyp |
Ref |
Expression |
1 |
|
ssv |
⊢ 𝐴 ⊆ V |
2 |
|
ssv |
⊢ 𝐵 ⊆ V |
3 |
|
resmpo |
⊢ ( ( 𝐴 ⊆ V ∧ 𝐵 ⊆ V ) → ( ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑓 ∈ 𝐴 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑓 ∈ 𝐴 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
5 |
|
df-of |
⊢ ∘f 𝑅 = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
6 |
5
|
reseq1i |
⊢ ( ∘f 𝑅 ↾ ( 𝐴 × 𝐵 ) ) = ( ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) ↾ ( 𝐴 × 𝐵 ) ) |
7 |
|
eqid |
⊢ 𝐴 = 𝐴 |
8 |
|
eqid |
⊢ 𝐵 = 𝐵 |
9 |
|
vex |
⊢ 𝑓 ∈ V |
10 |
|
vex |
⊢ 𝑔 ∈ V |
11 |
9
|
dmex |
⊢ dom 𝑓 ∈ V |
12 |
11
|
inex1 |
⊢ ( dom 𝑓 ∩ dom 𝑔 ) ∈ V |
13 |
12
|
mptex |
⊢ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ∈ V |
14 |
5
|
ovmpt4g |
⊢ ( ( 𝑓 ∈ V ∧ 𝑔 ∈ V ∧ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ∈ V ) → ( 𝑓 ∘f 𝑅 𝑔 ) = ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
15 |
9 10 13 14
|
mp3an |
⊢ ( 𝑓 ∘f 𝑅 𝑔 ) = ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) |
16 |
7 8 15
|
mpoeq123i |
⊢ ( 𝑓 ∈ 𝐴 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘f 𝑅 𝑔 ) ) = ( 𝑓 ∈ 𝐴 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
17 |
4 6 16
|
3eqtr4i |
⊢ ( ∘f 𝑅 ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑓 ∈ 𝐴 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘f 𝑅 𝑔 ) ) |