Metamath Proof Explorer


Theorem ofmresval

Description: Value of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014)

Ref Expression
Hypotheses ofmresval.f ( 𝜑𝐹𝐴 )
ofmresval.g ( 𝜑𝐺𝐵 )
Assertion ofmresval ( 𝜑 → ( 𝐹 ( ∘f 𝑅 ↾ ( 𝐴 × 𝐵 ) ) 𝐺 ) = ( 𝐹f 𝑅 𝐺 ) )

Proof

Step Hyp Ref Expression
1 ofmresval.f ( 𝜑𝐹𝐴 )
2 ofmresval.g ( 𝜑𝐺𝐵 )
3 ovres ( ( 𝐹𝐴𝐺𝐵 ) → ( 𝐹 ( ∘f 𝑅 ↾ ( 𝐴 × 𝐵 ) ) 𝐺 ) = ( 𝐹f 𝑅 𝐺 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐹 ( ∘f 𝑅 ↾ ( 𝐴 × 𝐵 ) ) 𝐺 ) = ( 𝐹f 𝑅 𝐺 ) )