Metamath Proof Explorer
Description: Value of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014)
|
|
Ref |
Expression |
|
Hypotheses |
ofmresval.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
|
|
ofmresval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
|
Assertion |
ofmresval |
⊢ ( 𝜑 → ( 𝐹 ( ∘f 𝑅 ↾ ( 𝐴 × 𝐵 ) ) 𝐺 ) = ( 𝐹 ∘f 𝑅 𝐺 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ofmresval.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
| 2 |
|
ofmresval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
| 3 |
|
ovres |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ( ∘f 𝑅 ↾ ( 𝐴 × 𝐵 ) ) 𝐺 ) = ( 𝐹 ∘f 𝑅 𝐺 ) ) |
| 4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ( ∘f 𝑅 ↾ ( 𝐴 × 𝐵 ) ) 𝐺 ) = ( 𝐹 ∘f 𝑅 𝐺 ) ) |