Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) |
2 |
1
|
ffnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐹 Fn 𝐴 ) |
3 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐺 : 𝐴 ⟶ ℂ ) |
4 |
3
|
ffnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐺 Fn 𝐴 ) |
5 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐴 ∈ 𝑉 ) |
6 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
7 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
8 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
9 |
2 4 5 5 6 7 8
|
ofval |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∘f · 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) |
10 |
9
|
eqeq1d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ∘f · 𝐺 ) ‘ 𝑥 ) = 0 ↔ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) = 0 ) ) |
11 |
1
|
ffvelrnda |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
12 |
3
|
ffvelrnda |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
13 |
11 12
|
mul0ord |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) = 0 ↔ ( ( 𝐹 ‘ 𝑥 ) = 0 ∨ ( 𝐺 ‘ 𝑥 ) = 0 ) ) ) |
14 |
10 13
|
bitrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ∘f · 𝐺 ) ‘ 𝑥 ) = 0 ↔ ( ( 𝐹 ‘ 𝑥 ) = 0 ∨ ( 𝐺 ‘ 𝑥 ) = 0 ) ) ) |
15 |
14
|
pm5.32da |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝐹 ∘f · 𝐺 ) ‘ 𝑥 ) = 0 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑥 ) = 0 ∨ ( 𝐺 ‘ 𝑥 ) = 0 ) ) ) ) |
16 |
2 4 5 5 6
|
offn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( 𝐹 ∘f · 𝐺 ) Fn 𝐴 ) |
17 |
|
fniniseg |
⊢ ( ( 𝐹 ∘f · 𝐺 ) Fn 𝐴 → ( 𝑥 ∈ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 0 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝐹 ∘f · 𝐺 ) ‘ 𝑥 ) = 0 ) ) ) |
18 |
16 17
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( 𝑥 ∈ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 0 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝐹 ∘f · 𝐺 ) ‘ 𝑥 ) = 0 ) ) ) |
19 |
|
fniniseg |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) |
20 |
2 19
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) |
21 |
|
fniniseg |
⊢ ( 𝐺 Fn 𝐴 → ( 𝑥 ∈ ( ◡ 𝐺 “ { 0 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) ) |
22 |
4 21
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( 𝑥 ∈ ( ◡ 𝐺 “ { 0 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) ) |
23 |
20 22
|
orbi12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ∨ 𝑥 ∈ ( ◡ 𝐺 “ { 0 } ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) ∨ ( 𝑥 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) ) ) |
24 |
|
elun |
⊢ ( 𝑥 ∈ ( ( ◡ 𝐹 “ { 0 } ) ∪ ( ◡ 𝐺 “ { 0 } ) ) ↔ ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ∨ 𝑥 ∈ ( ◡ 𝐺 “ { 0 } ) ) ) |
25 |
|
andi |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑥 ) = 0 ∨ ( 𝐺 ‘ 𝑥 ) = 0 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) ∨ ( 𝑥 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) ) |
26 |
23 24 25
|
3bitr4g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( 𝑥 ∈ ( ( ◡ 𝐹 “ { 0 } ) ∪ ( ◡ 𝐺 “ { 0 } ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑥 ) = 0 ∨ ( 𝐺 ‘ 𝑥 ) = 0 ) ) ) ) |
27 |
15 18 26
|
3bitr4d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( 𝑥 ∈ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 0 } ) ↔ 𝑥 ∈ ( ( ◡ 𝐹 “ { 0 } ) ∪ ( ◡ 𝐺 “ { 0 } ) ) ) ) |
28 |
27
|
eqrdv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 0 } ) = ( ( ◡ 𝐹 “ { 0 } ) ∪ ( ◡ 𝐺 “ { 0 } ) ) ) |