Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐴 ∈ 𝑉 ) |
2 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) |
3 |
2
|
ffnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐹 Fn 𝐴 ) |
4 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
5 |
4
|
negcli |
⊢ - 1 ∈ ℂ |
6 |
|
fnconstg |
⊢ ( - 1 ∈ ℂ → ( 𝐴 × { - 1 } ) Fn 𝐴 ) |
7 |
5 6
|
mp1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( 𝐴 × { - 1 } ) Fn 𝐴 ) |
8 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐺 : 𝐴 ⟶ ℂ ) |
9 |
8
|
ffnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐺 Fn 𝐴 ) |
10 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
11 |
7 9 1 1 10
|
offn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( ( 𝐴 × { - 1 } ) ∘f · 𝐺 ) Fn 𝐴 ) |
12 |
3 9 1 1 10
|
offn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( 𝐹 ∘f − 𝐺 ) Fn 𝐴 ) |
13 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
14 |
5
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → - 1 ∈ ℂ ) |
15 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
16 |
1 14 9 15
|
ofc1 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐴 × { - 1 } ) ∘f · 𝐺 ) ‘ 𝑥 ) = ( - 1 · ( 𝐺 ‘ 𝑥 ) ) ) |
17 |
8
|
ffvelrnda |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
18 |
17
|
mulm1d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( - 1 · ( 𝐺 ‘ 𝑥 ) ) = - ( 𝐺 ‘ 𝑥 ) ) |
19 |
16 18
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐴 × { - 1 } ) ∘f · 𝐺 ) ‘ 𝑥 ) = - ( 𝐺 ‘ 𝑥 ) ) |
20 |
2
|
ffvelrnda |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
21 |
20 17
|
negsubd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) + - ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
22 |
3 9 1 1 10 13 15
|
ofval |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
23 |
21 22
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) + - ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) |
24 |
1 3 11 12 13 19 23
|
offveq |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( 𝐹 ∘f + ( ( 𝐴 × { - 1 } ) ∘f · 𝐺 ) ) = ( 𝐹 ∘f − 𝐺 ) ) |