| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | simp2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 3 | 2 | ffnd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  𝐹  Fn  𝐴 ) | 
						
							| 4 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 5 | 4 | negcli | ⊢ - 1  ∈  ℂ | 
						
							| 6 |  | fnconstg | ⊢ ( - 1  ∈  ℂ  →  ( 𝐴  ×  { - 1 } )  Fn  𝐴 ) | 
						
							| 7 | 5 6 | mp1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  ( 𝐴  ×  { - 1 } )  Fn  𝐴 ) | 
						
							| 8 |  | simp3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  𝐺 : 𝐴 ⟶ ℂ ) | 
						
							| 9 | 8 | ffnd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  𝐺  Fn  𝐴 ) | 
						
							| 10 |  | inidm | ⊢ ( 𝐴  ∩  𝐴 )  =  𝐴 | 
						
							| 11 | 7 9 1 1 10 | offn | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  ( ( 𝐴  ×  { - 1 } )  ∘f   ·  𝐺 )  Fn  𝐴 ) | 
						
							| 12 | 3 9 1 1 10 | offn | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  ( 𝐹  ∘f   −  𝐺 )  Fn  𝐴 ) | 
						
							| 13 |  | eqidd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 14 | 5 | a1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  - 1  ∈  ℂ ) | 
						
							| 15 |  | eqidd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 16 | 1 14 9 15 | ofc1 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( ( ( 𝐴  ×  { - 1 } )  ∘f   ·  𝐺 ) ‘ 𝑥 )  =  ( - 1  ·  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 17 | 8 | ffvelcdmda | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 18 | 17 | mulm1d | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( - 1  ·  ( 𝐺 ‘ 𝑥 ) )  =  - ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 19 | 16 18 | eqtrd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( ( ( 𝐴  ×  { - 1 } )  ∘f   ·  𝐺 ) ‘ 𝑥 )  =  - ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 20 | 2 | ffvelcdmda | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 21 | 20 17 | negsubd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑥 )  +  - ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 22 | 3 9 1 1 10 13 15 | ofval | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 23 | 21 22 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑥 )  +  - ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 ) ) | 
						
							| 24 | 1 3 11 12 13 19 23 | offveq | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  ( 𝐹  ∘f   +  ( ( 𝐴  ×  { - 1 } )  ∘f   ·  𝐺 ) )  =  ( 𝐹  ∘f   −  𝐺 ) ) |