Step |
Hyp |
Ref |
Expression |
1 |
|
breq |
⊢ ( 𝑅 = 𝑆 → ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) 𝑆 ( 𝑔 ‘ 𝑥 ) ) ) |
2 |
1
|
ralbidv |
⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑆 ( 𝑔 ‘ 𝑥 ) ) ) |
3 |
2
|
opabbidv |
⊢ ( 𝑅 = 𝑆 → { 〈 𝑓 , 𝑔 〉 ∣ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } = { 〈 𝑓 , 𝑔 〉 ∣ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑆 ( 𝑔 ‘ 𝑥 ) } ) |
4 |
|
df-ofr |
⊢ ∘r 𝑅 = { 〈 𝑓 , 𝑔 〉 ∣ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } |
5 |
|
df-ofr |
⊢ ∘r 𝑆 = { 〈 𝑓 , 𝑔 〉 ∣ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑆 ( 𝑔 ‘ 𝑥 ) } |
6 |
3 4 5
|
3eqtr4g |
⊢ ( 𝑅 = 𝑆 → ∘r 𝑅 = ∘r 𝑆 ) |