Metamath Proof Explorer


Theorem ofreq

Description: Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Assertion ofreq ( 𝑅 = 𝑆 → ∘r 𝑅 = ∘r 𝑆 )

Proof

Step Hyp Ref Expression
1 breq ( 𝑅 = 𝑆 → ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ↔ ( 𝑓𝑥 ) 𝑆 ( 𝑔𝑥 ) ) )
2 1 ralbidv ( 𝑅 = 𝑆 → ( ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ↔ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓𝑥 ) 𝑆 ( 𝑔𝑥 ) ) )
3 2 opabbidv ( 𝑅 = 𝑆 → { ⟨ 𝑓 , 𝑔 ⟩ ∣ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) } = { ⟨ 𝑓 , 𝑔 ⟩ ∣ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓𝑥 ) 𝑆 ( 𝑔𝑥 ) } )
4 df-ofr r 𝑅 = { ⟨ 𝑓 , 𝑔 ⟩ ∣ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) }
5 df-ofr r 𝑆 = { ⟨ 𝑓 , 𝑔 ⟩ ∣ ∀ 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ( 𝑓𝑥 ) 𝑆 ( 𝑔𝑥 ) }
6 3 4 5 3eqtr4g ( 𝑅 = 𝑆 → ∘r 𝑅 = ∘r 𝑆 )