| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq | ⊢ ( 𝑅  =  𝑆  →  ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 )  ↔  ( 𝑓 ‘ 𝑥 ) 𝑆 ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 2 | 1 | ralbidv | ⊢ ( 𝑅  =  𝑆  →  ( ∀ 𝑥  ∈  ( dom  𝑓  ∩  dom  𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 )  ↔  ∀ 𝑥  ∈  ( dom  𝑓  ∩  dom  𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑆 ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 3 | 2 | opabbidv | ⊢ ( 𝑅  =  𝑆  →  { 〈 𝑓 ,  𝑔 〉  ∣  ∀ 𝑥  ∈  ( dom  𝑓  ∩  dom  𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) }  =  { 〈 𝑓 ,  𝑔 〉  ∣  ∀ 𝑥  ∈  ( dom  𝑓  ∩  dom  𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑆 ( 𝑔 ‘ 𝑥 ) } ) | 
						
							| 4 |  | df-ofr | ⊢  ∘r  𝑅  =  { 〈 𝑓 ,  𝑔 〉  ∣  ∀ 𝑥  ∈  ( dom  𝑓  ∩  dom  𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } | 
						
							| 5 |  | df-ofr | ⊢  ∘r  𝑆  =  { 〈 𝑓 ,  𝑔 〉  ∣  ∀ 𝑥  ∈  ( dom  𝑓  ∩  dom  𝑔 ) ( 𝑓 ‘ 𝑥 ) 𝑆 ( 𝑔 ‘ 𝑥 ) } | 
						
							| 6 | 3 4 5 | 3eqtr4g | ⊢ ( 𝑅  =  𝑆  →   ∘r  𝑅  =   ∘r  𝑆 ) |