Step |
Hyp |
Ref |
Expression |
1 |
|
ofresid.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
ofresid.2 |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) |
3 |
|
ofresid.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
4 |
1
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
5 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐵 ) |
6 |
4 5
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝐵 × 𝐵 ) ) |
7 |
6
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑅 ↾ ( 𝐵 × 𝐵 ) ) ‘ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) = ( 𝑅 ‘ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |
8 |
7
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅 ‘ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) = ( ( 𝑅 ↾ ( 𝐵 × 𝐵 ) ) ‘ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |
9 |
|
df-ov |
⊢ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) = ( 𝑅 ‘ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) |
10 |
|
df-ov |
⊢ ( ( 𝐹 ‘ 𝑥 ) ( 𝑅 ↾ ( 𝐵 × 𝐵 ) ) ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝑅 ↾ ( 𝐵 × 𝐵 ) ) ‘ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) |
11 |
8 9 10
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( 𝑅 ↾ ( 𝐵 × 𝐵 ) ) ( 𝐺 ‘ 𝑥 ) ) ) |
12 |
11
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) ( 𝑅 ↾ ( 𝐵 × 𝐵 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ) |
13 |
1
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
14 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
15 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
16 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
17 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
18 |
13 14 3 3 15 16 17
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
19 |
13 14 3 3 15 16 17
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f ( 𝑅 ↾ ( 𝐵 × 𝐵 ) ) 𝐺 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) ( 𝑅 ↾ ( 𝐵 × 𝐵 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ) |
20 |
12 18 19
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝐹 ∘f ( 𝑅 ↾ ( 𝐵 × 𝐵 ) ) 𝐺 ) ) |