Metamath Proof Explorer


Theorem ofrn

Description: The range of the function operation. (Contributed by Thierry Arnoux, 8-Jan-2017)

Ref Expression
Hypotheses ofrn.1 ( 𝜑𝐹 : 𝐴𝐵 )
ofrn.2 ( 𝜑𝐺 : 𝐴𝐵 )
ofrn.3 ( 𝜑+ : ( 𝐵 × 𝐵 ) ⟶ 𝐶 )
ofrn.4 ( 𝜑𝐴𝑉 )
Assertion ofrn ( 𝜑 → ran ( 𝐹f + 𝐺 ) ⊆ 𝐶 )

Proof

Step Hyp Ref Expression
1 ofrn.1 ( 𝜑𝐹 : 𝐴𝐵 )
2 ofrn.2 ( 𝜑𝐺 : 𝐴𝐵 )
3 ofrn.3 ( 𝜑+ : ( 𝐵 × 𝐵 ) ⟶ 𝐶 )
4 ofrn.4 ( 𝜑𝐴𝑉 )
5 3 fovrnda ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐶 )
6 inidm ( 𝐴𝐴 ) = 𝐴
7 5 1 2 4 4 6 off ( 𝜑 → ( 𝐹f + 𝐺 ) : 𝐴𝐶 )
8 7 frnd ( 𝜑 → ran ( 𝐹f + 𝐺 ) ⊆ 𝐶 )