Step |
Hyp |
Ref |
Expression |
1 |
|
offval.1 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
2 |
|
offval.2 |
⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
3 |
|
offval.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
4 |
|
offval.4 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
5 |
|
offval.5 |
⊢ ( 𝐴 ∩ 𝐵 ) = 𝑆 |
6 |
|
ofval.6 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) = 𝐶 ) |
7 |
|
ofval.7 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑋 ) = 𝐷 ) |
8 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
9 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
10 |
1 2 3 4 5 8 9
|
ofrfval |
⊢ ( 𝜑 → ( 𝐹 ∘r 𝑅 𝐺 ↔ ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
11 |
10
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ) → ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑋 ) ) |
14 |
12 13
|
breq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑋 ) 𝑅 ( 𝐺 ‘ 𝑋 ) ) ) |
15 |
14
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) → ( 𝑋 ∈ 𝑆 → ( 𝐹 ‘ 𝑋 ) 𝑅 ( 𝐺 ‘ 𝑋 ) ) ) |
16 |
11 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ) → ( 𝑋 ∈ 𝑆 → ( 𝐹 ‘ 𝑋 ) 𝑅 ( 𝐺 ‘ 𝑋 ) ) ) |
17 |
16
|
3impia |
⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ∧ 𝑋 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑋 ) 𝑅 ( 𝐺 ‘ 𝑋 ) ) |
18 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ∧ 𝑋 ∈ 𝑆 ) → 𝜑 ) |
19 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
20 |
5 19
|
eqsstrri |
⊢ 𝑆 ⊆ 𝐴 |
21 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) |
22 |
20 21
|
sselid |
⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝐴 ) |
23 |
18 22 6
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ∧ 𝑋 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑋 ) = 𝐶 ) |
24 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
25 |
5 24
|
eqsstrri |
⊢ 𝑆 ⊆ 𝐵 |
26 |
25 21
|
sselid |
⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝐵 ) |
27 |
18 26 7
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ∧ 𝑋 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑋 ) = 𝐷 ) |
28 |
17 23 27
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝐹 ∘r 𝑅 𝐺 ∧ 𝑋 ∈ 𝑆 ) → 𝐶 𝑅 𝐷 ) |