| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 2 | 1 | ffnd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  𝐹  Fn  𝐴 ) | 
						
							| 3 |  | simp3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  𝐺 : 𝐴 ⟶ ℂ ) | 
						
							| 4 | 3 | ffnd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  𝐺  Fn  𝐴 ) | 
						
							| 5 |  | simp1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  𝐴  ∈  𝑉 ) | 
						
							| 6 |  | inidm | ⊢ ( 𝐴  ∩  𝐴 )  =  𝐴 | 
						
							| 7 |  | eqidd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 8 |  | eqidd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 9 | 2 4 5 5 6 7 8 | ofval | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 10 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 11 | 10 | fvconst2 | ⊢ ( 𝑥  ∈  𝐴  →  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  =  0 ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  =  0 ) | 
						
							| 13 | 9 12 | eqeq12d | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 )  =  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  ↔  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) )  =  0 ) ) | 
						
							| 14 | 1 | ffvelcdmda | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 15 | 3 | ffvelcdmda | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 16 | 14 15 | subeq0ad | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) )  =  0  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 17 | 13 16 | bitrd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 )  =  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 18 | 17 | ralbidva | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  ( ∀ 𝑥  ∈  𝐴 ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 )  =  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 19 | 2 4 5 5 6 | offn | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  ( 𝐹  ∘f   −  𝐺 )  Fn  𝐴 ) | 
						
							| 20 | 10 | fconst | ⊢ ( 𝐴  ×  { 0 } ) : 𝐴 ⟶ { 0 } | 
						
							| 21 |  | ffn | ⊢ ( ( 𝐴  ×  { 0 } ) : 𝐴 ⟶ { 0 }  →  ( 𝐴  ×  { 0 } )  Fn  𝐴 ) | 
						
							| 22 | 20 21 | ax-mp | ⊢ ( 𝐴  ×  { 0 } )  Fn  𝐴 | 
						
							| 23 |  | eqfnfv | ⊢ ( ( ( 𝐹  ∘f   −  𝐺 )  Fn  𝐴  ∧  ( 𝐴  ×  { 0 } )  Fn  𝐴 )  →  ( ( 𝐹  ∘f   −  𝐺 )  =  ( 𝐴  ×  { 0 } )  ↔  ∀ 𝑥  ∈  𝐴 ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 )  =  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 ) ) ) | 
						
							| 24 | 19 22 23 | sylancl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  ( ( 𝐹  ∘f   −  𝐺 )  =  ( 𝐴  ×  { 0 } )  ↔  ∀ 𝑥  ∈  𝐴 ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 )  =  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 ) ) ) | 
						
							| 25 |  | eqfnfv | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ( 𝐹  =  𝐺  ↔  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 26 | 2 4 25 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  ( 𝐹  =  𝐺  ↔  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 27 | 18 24 26 | 3bitr4d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ )  →  ( ( 𝐹  ∘f   −  𝐺 )  =  ( 𝐴  ×  { 0 } )  ↔  𝐹  =  𝐺 ) ) |