| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ )  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 2 | 1 | ffvelcdmda | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 3 |  | simp3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ )  →  𝐺 : 𝐴 ⟶ ℝ ) | 
						
							| 4 | 3 | ffvelcdmda | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 5 | 2 4 | subge0d | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ )  ∧  𝑥  ∈  𝐴 )  →  ( 0  ≤  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) )  ↔  ( 𝐺 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 6 | 5 | ralbidva | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ )  →  ( ∀ 𝑥  ∈  𝐴 0  ≤  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝐺 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 7 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 8 |  | fnconstg | ⊢ ( 0  ∈  ℂ  →  ( 𝐴  ×  { 0 } )  Fn  𝐴 ) | 
						
							| 9 | 7 8 | mp1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ )  →  ( 𝐴  ×  { 0 } )  Fn  𝐴 ) | 
						
							| 10 | 1 | ffnd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ )  →  𝐹  Fn  𝐴 ) | 
						
							| 11 | 3 | ffnd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ )  →  𝐺  Fn  𝐴 ) | 
						
							| 12 |  | simp1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ )  →  𝐴  ∈  𝑉 ) | 
						
							| 13 |  | inidm | ⊢ ( 𝐴  ∩  𝐴 )  =  𝐴 | 
						
							| 14 | 10 11 12 12 13 | offn | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ )  →  ( 𝐹  ∘f   −  𝐺 )  Fn  𝐴 ) | 
						
							| 15 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 16 | 15 | fvconst2 | ⊢ ( 𝑥  ∈  𝐴  →  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  =  0 ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  =  0 ) | 
						
							| 18 |  | eqidd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 19 |  | eqidd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 20 | 10 11 12 12 13 18 19 | ofval | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 21 | 9 14 12 12 13 17 20 | ofrfval | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ )  →  ( ( 𝐴  ×  { 0 } )  ∘r   ≤  ( 𝐹  ∘f   −  𝐺 )  ↔  ∀ 𝑥  ∈  𝐴 0  ≤  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 22 | 11 10 12 12 13 19 18 | ofrfval | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ )  →  ( 𝐺  ∘r   ≤  𝐹  ↔  ∀ 𝑥  ∈  𝐴 ( 𝐺 ‘ 𝑥 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 23 | 6 21 22 | 3bitr4d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ )  →  ( ( 𝐴  ×  { 0 } )  ∘r   ≤  ( 𝐹  ∘f   −  𝐺 )  ↔  𝐺  ∘r   ≤  𝐹 ) ) |