Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) |
2 |
1
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → 𝐹 ∈ V ) |
3 |
|
elex |
⊢ ( 𝐺 ∈ 𝑊 → 𝐺 ∈ V ) |
4 |
3
|
adantl |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → 𝐺 ∈ V ) |
5 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) |
6 |
5
|
a1i |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → Fun ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
7 |
|
dftpos4 |
⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
8 |
|
tposexg |
⊢ ( 𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V ) |
9 |
8
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → tpos 𝐹 ∈ V ) |
10 |
7 9
|
eqeltrrid |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ∈ V ) |
11 |
|
dftpos4 |
⊢ tpos 𝐺 = ( 𝐺 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
12 |
|
tposexg |
⊢ ( 𝐺 ∈ 𝑊 → tpos 𝐺 ∈ V ) |
13 |
12
|
adantl |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → tpos 𝐺 ∈ V ) |
14 |
11 13
|
eqeltrrid |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( 𝐺 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ∈ V ) |
15 |
|
ofco2 |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ∧ ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ∈ V ∧ ( 𝐺 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ∈ V ) ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) = ( ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ∘f 𝑅 ( 𝐺 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) ) |
16 |
2 4 6 10 14 15
|
syl23anc |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) = ( ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ∘f 𝑅 ( 𝐺 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) ) |
17 |
|
dftpos4 |
⊢ tpos ( 𝐹 ∘f 𝑅 𝐺 ) = ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
18 |
7 11
|
oveq12i |
⊢ ( tpos 𝐹 ∘f 𝑅 tpos 𝐺 ) = ( ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ∘f 𝑅 ( 𝐺 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) |
19 |
16 17 18
|
3eqtr4g |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → tpos ( 𝐹 ∘f 𝑅 𝐺 ) = ( tpos 𝐹 ∘f 𝑅 tpos 𝐺 ) ) |