| Step |
Hyp |
Ref |
Expression |
| 1 |
|
offval.1 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 2 |
|
offval.2 |
⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
| 3 |
|
offval.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 4 |
|
offval.4 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 5 |
|
offval.5 |
⊢ ( 𝐴 ∩ 𝐵 ) = 𝑆 |
| 6 |
|
ofval.6 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) = 𝐶 ) |
| 7 |
|
ofval.7 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑋 ) = 𝐷 ) |
| 8 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 9 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 10 |
1 2 3 4 5 8 9
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 11 |
10
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑋 ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑋 ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑋 ) ) |
| 15 |
13 14
|
oveq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝑅 ( 𝐺 ‘ 𝑋 ) ) ) |
| 16 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
| 17 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑋 ) 𝑅 ( 𝐺 ‘ 𝑋 ) ) ∈ V |
| 18 |
15 16 17
|
fvmpt |
⊢ ( 𝑋 ∈ 𝑆 → ( ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑋 ) = ( ( 𝐹 ‘ 𝑋 ) 𝑅 ( 𝐺 ‘ 𝑋 ) ) ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑋 ) = ( ( 𝐹 ‘ 𝑋 ) 𝑅 ( 𝐺 ‘ 𝑋 ) ) ) |
| 20 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
| 21 |
5 20
|
eqsstrri |
⊢ 𝑆 ⊆ 𝐴 |
| 22 |
21
|
sseli |
⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐴 ) |
| 23 |
22 6
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑋 ) = 𝐶 ) |
| 24 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
| 25 |
5 24
|
eqsstrri |
⊢ 𝑆 ⊆ 𝐵 |
| 26 |
25
|
sseli |
⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐵 ) |
| 27 |
26 7
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑋 ) = 𝐷 ) |
| 28 |
23 27
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑋 ) 𝑅 ( 𝐺 ‘ 𝑋 ) ) = ( 𝐶 𝑅 𝐷 ) ) |
| 29 |
12 19 28
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑋 ) = ( 𝐶 𝑅 𝐷 ) ) |