Metamath Proof Explorer


Theorem oi0

Description: Definition of the ordinal isomorphism when its arguments are not meaningful. (Contributed by Mario Carneiro, 25-Jun-2015)

Ref Expression
Hypothesis oicl.1 𝐹 = OrdIso ( 𝑅 , 𝐴 )
Assertion oi0 ( ¬ ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → 𝐹 = ∅ )

Proof

Step Hyp Ref Expression
1 oicl.1 𝐹 = OrdIso ( 𝑅 , 𝐴 )
2 df-oi OrdIso ( 𝑅 , 𝐴 ) = if ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) , ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡𝐴𝑧 ∈ ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 } ) , ∅ )
3 1 2 eqtri 𝐹 = if ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) , ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡𝐴𝑧 ∈ ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 } ) , ∅ )
4 iffalse ( ¬ ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → if ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) , ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡𝐴𝑧 ∈ ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 } ) , ∅ ) = ∅ )
5 3 4 syl5eq ( ¬ ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → 𝐹 = ∅ )