Description: Absorption of disjunction into equivalence. (Contributed by NM, 6-Aug-1995) (Proof shortened by Wolf Lammen, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oibabs | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) ↔ ( 𝜑 ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norbi | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | id | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 1 2 | ja | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) → ( 𝜑 ↔ 𝜓 ) ) |
| 4 | ax-1 | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) ) | |
| 5 | 3 4 | impbii | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) ↔ ( 𝜑 ↔ 𝜓 ) ) |