Description: Absorption of disjunction into equivalence. (Contributed by NM, 6-Aug-1995) (Proof shortened by Wolf Lammen, 3-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | oibabs | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) ↔ ( 𝜑 ↔ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | norbi | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) | |
2 | id | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) | |
3 | 1 2 | ja | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) → ( 𝜑 ↔ 𝜓 ) ) |
4 | ax-1 | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) ) | |
5 | 3 4 | impbii | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) ↔ ( 𝜑 ↔ 𝜓 ) ) |