Metamath Proof Explorer


Theorem oien

Description: The order type of a well-ordered set is equinumerous to the set. (Contributed by Mario Carneiro, 23-May-2015)

Ref Expression
Hypothesis oicl.1 𝐹 = OrdIso ( 𝑅 , 𝐴 )
Assertion oien ( ( 𝐴𝑉𝑅 We 𝐴 ) → dom 𝐹𝐴 )

Proof

Step Hyp Ref Expression
1 oicl.1 𝐹 = OrdIso ( 𝑅 , 𝐴 )
2 1 oiexg ( 𝐴𝑉𝐹 ∈ V )
3 1 oiiso ( ( 𝐴𝑉𝑅 We 𝐴 ) → 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) )
4 isof1o ( 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) → 𝐹 : dom 𝐹1-1-onto𝐴 )
5 3 4 syl ( ( 𝐴𝑉𝑅 We 𝐴 ) → 𝐹 : dom 𝐹1-1-onto𝐴 )
6 f1oen3g ( ( 𝐹 ∈ V ∧ 𝐹 : dom 𝐹1-1-onto𝐴 ) → dom 𝐹𝐴 )
7 2 5 6 syl2an2r ( ( 𝐴𝑉𝑅 We 𝐴 ) → dom 𝐹𝐴 )