Description: The order type of a well-ordered set is equinumerous to the set. (Contributed by Mario Carneiro, 23-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | oicl.1 | ⊢ 𝐹 = OrdIso ( 𝑅 , 𝐴 ) | |
Assertion | oien | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴 ) → dom 𝐹 ≈ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oicl.1 | ⊢ 𝐹 = OrdIso ( 𝑅 , 𝐴 ) | |
2 | 1 | oiexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 ∈ V ) |
3 | 1 | oiiso | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴 ) → 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) |
4 | isof1o | ⊢ ( 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) → 𝐹 : dom 𝐹 –1-1-onto→ 𝐴 ) | |
5 | 3 4 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴 ) → 𝐹 : dom 𝐹 –1-1-onto→ 𝐴 ) |
6 | f1oen3g | ⊢ ( ( 𝐹 ∈ V ∧ 𝐹 : dom 𝐹 –1-1-onto→ 𝐴 ) → dom 𝐹 ≈ 𝐴 ) | |
7 | 2 5 6 | syl2an2r | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴 ) → dom 𝐹 ≈ 𝐴 ) |