Step |
Hyp |
Ref |
Expression |
1 |
|
weeq1 |
⊢ ( 𝑅 = 𝑆 → ( 𝑅 We 𝐴 ↔ 𝑆 We 𝐴 ) ) |
2 |
|
seeq1 |
⊢ ( 𝑅 = 𝑆 → ( 𝑅 Se 𝐴 ↔ 𝑆 Se 𝐴 ) ) |
3 |
1 2
|
anbi12d |
⊢ ( 𝑅 = 𝑆 → ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ↔ ( 𝑆 We 𝐴 ∧ 𝑆 Se 𝐴 ) ) ) |
4 |
|
breq |
⊢ ( 𝑅 = 𝑆 → ( 𝑗 𝑅 𝑤 ↔ 𝑗 𝑆 𝑤 ) ) |
5 |
4
|
ralbidv |
⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 ↔ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 ) ) |
6 |
5
|
rabbidv |
⊢ ( 𝑅 = 𝑆 → { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ) |
7 |
|
breq |
⊢ ( 𝑅 = 𝑆 → ( 𝑢 𝑅 𝑣 ↔ 𝑢 𝑆 𝑣 ) ) |
8 |
7
|
notbid |
⊢ ( 𝑅 = 𝑆 → ( ¬ 𝑢 𝑅 𝑣 ↔ ¬ 𝑢 𝑆 𝑣 ) ) |
9 |
6 8
|
raleqbidv |
⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ↔ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) |
10 |
6 9
|
riotaeqbidv |
⊢ ( 𝑅 = 𝑆 → ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) = ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) |
11 |
10
|
mpteq2dv |
⊢ ( 𝑅 = 𝑆 → ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) |
12 |
|
recseq |
⊢ ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) → recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) = recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) ) |
13 |
11 12
|
syl |
⊢ ( 𝑅 = 𝑆 → recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) = recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) ) |
14 |
13
|
imaeq1d |
⊢ ( 𝑅 = 𝑆 → ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) = ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) ) |
15 |
|
breq |
⊢ ( 𝑅 = 𝑆 → ( 𝑧 𝑅 𝑡 ↔ 𝑧 𝑆 𝑡 ) ) |
16 |
14 15
|
raleqbidv |
⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 ↔ ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑆 𝑡 ) ) |
17 |
16
|
rexbidv |
⊢ ( 𝑅 = 𝑆 → ( ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 ↔ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑆 𝑡 ) ) |
18 |
17
|
rabbidv |
⊢ ( 𝑅 = 𝑆 → { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 } = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑆 𝑡 } ) |
19 |
13 18
|
reseq12d |
⊢ ( 𝑅 = 𝑆 → ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 } ) = ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑆 𝑡 } ) ) |
20 |
3 19
|
ifbieq1d |
⊢ ( 𝑅 = 𝑆 → if ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) , ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 } ) , ∅ ) = if ( ( 𝑆 We 𝐴 ∧ 𝑆 Se 𝐴 ) , ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑆 𝑡 } ) , ∅ ) ) |
21 |
|
df-oi |
⊢ OrdIso ( 𝑅 , 𝐴 ) = if ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) , ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 } ) , ∅ ) |
22 |
|
df-oi |
⊢ OrdIso ( 𝑆 , 𝐴 ) = if ( ( 𝑆 We 𝐴 ∧ 𝑆 Se 𝐴 ) , ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑆 𝑡 } ) , ∅ ) |
23 |
20 21 22
|
3eqtr4g |
⊢ ( 𝑅 = 𝑆 → OrdIso ( 𝑅 , 𝐴 ) = OrdIso ( 𝑆 , 𝐴 ) ) |