Metamath Proof Explorer


Theorem oieq1

Description: Equality theorem for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015)

Ref Expression
Assertion oieq1 ( 𝑅 = 𝑆 → OrdIso ( 𝑅 , 𝐴 ) = OrdIso ( 𝑆 , 𝐴 ) )

Proof

Step Hyp Ref Expression
1 weeq1 ( 𝑅 = 𝑆 → ( 𝑅 We 𝐴𝑆 We 𝐴 ) )
2 seeq1 ( 𝑅 = 𝑆 → ( 𝑅 Se 𝐴𝑆 Se 𝐴 ) )
3 1 2 anbi12d ( 𝑅 = 𝑆 → ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ↔ ( 𝑆 We 𝐴𝑆 Se 𝐴 ) ) )
4 breq ( 𝑅 = 𝑆 → ( 𝑗 𝑅 𝑤𝑗 𝑆 𝑤 ) )
5 4 ralbidv ( 𝑅 = 𝑆 → ( ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 ↔ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 ) )
6 5 rabbidv ( 𝑅 = 𝑆 → { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } = { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } )
7 breq ( 𝑅 = 𝑆 → ( 𝑢 𝑅 𝑣𝑢 𝑆 𝑣 ) )
8 7 notbid ( 𝑅 = 𝑆 → ( ¬ 𝑢 𝑅 𝑣 ↔ ¬ 𝑢 𝑆 𝑣 ) )
9 6 8 raleqbidv ( 𝑅 = 𝑆 → ( ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ↔ ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) )
10 6 9 riotaeqbidv ( 𝑅 = 𝑆 → ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) = ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) )
11 10 mpteq2dv ( 𝑅 = 𝑆 → ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) = ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) )
12 recseq ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) = ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) → recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) = recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) )
13 11 12 syl ( 𝑅 = 𝑆 → recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) = recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) )
14 13 imaeq1d ( 𝑅 = 𝑆 → ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) = ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) )
15 breq ( 𝑅 = 𝑆 → ( 𝑧 𝑅 𝑡𝑧 𝑆 𝑡 ) )
16 14 15 raleqbidv ( 𝑅 = 𝑆 → ( ∀ 𝑧 ∈ ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 ↔ ∀ 𝑧 ∈ ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑆 𝑡 ) )
17 16 rexbidv ( 𝑅 = 𝑆 → ( ∃ 𝑡𝐴𝑧 ∈ ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 ↔ ∃ 𝑡𝐴𝑧 ∈ ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑆 𝑡 ) )
18 17 rabbidv ( 𝑅 = 𝑆 → { 𝑥 ∈ On ∣ ∃ 𝑡𝐴𝑧 ∈ ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 } = { 𝑥 ∈ On ∣ ∃ 𝑡𝐴𝑧 ∈ ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑆 𝑡 } )
19 13 18 reseq12d ( 𝑅 = 𝑆 → ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡𝐴𝑧 ∈ ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 } ) = ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡𝐴𝑧 ∈ ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑆 𝑡 } ) )
20 3 19 ifbieq1d ( 𝑅 = 𝑆 → if ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) , ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡𝐴𝑧 ∈ ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 } ) , ∅ ) = if ( ( 𝑆 We 𝐴𝑆 Se 𝐴 ) , ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡𝐴𝑧 ∈ ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑆 𝑡 } ) , ∅ ) )
21 df-oi OrdIso ( 𝑅 , 𝐴 ) = if ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) , ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡𝐴𝑧 ∈ ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 } ) , ∅ )
22 df-oi OrdIso ( 𝑆 , 𝐴 ) = if ( ( 𝑆 We 𝐴𝑆 Se 𝐴 ) , ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) ↾ { 𝑥 ∈ On ∣ ∃ 𝑡𝐴𝑧 ∈ ( recs ( ( ∈ V ↦ ( 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑆 𝑤 } ¬ 𝑢 𝑆 𝑣 ) ) ) “ 𝑥 ) 𝑧 𝑆 𝑡 } ) , ∅ )
23 20 21 22 3eqtr4g ( 𝑅 = 𝑆 → OrdIso ( 𝑅 , 𝐴 ) = OrdIso ( 𝑆 , 𝐴 ) )