Step |
Hyp |
Ref |
Expression |
1 |
|
oicl.1 |
⊢ 𝐹 = OrdIso ( 𝑅 , 𝐴 ) |
2 |
1
|
ordtype |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) |
3 |
|
isof1o |
⊢ ( 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) → 𝐹 : dom 𝐹 –1-1-onto→ 𝐴 ) |
4 |
|
f1of1 |
⊢ ( 𝐹 : dom 𝐹 –1-1-onto→ 𝐴 → 𝐹 : dom 𝐹 –1-1→ 𝐴 ) |
5 |
2 3 4
|
3syl |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐹 : dom 𝐹 –1-1→ 𝐴 ) |
6 |
|
f1f |
⊢ ( 𝐹 : dom 𝐹 –1-1→ 𝐴 → 𝐹 : dom 𝐹 ⟶ 𝐴 ) |
7 |
|
f1dmex |
⊢ ( ( 𝐹 : dom 𝐹 –1-1→ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → dom 𝐹 ∈ V ) |
8 |
|
fex |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ∈ V ) → 𝐹 ∈ V ) |
9 |
6 7 8
|
syl2an2r |
⊢ ( ( 𝐹 : dom 𝐹 –1-1→ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐹 ∈ V ) |
10 |
9
|
expcom |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 : dom 𝐹 –1-1→ 𝐴 → 𝐹 ∈ V ) ) |
11 |
5 10
|
syl5 |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐹 ∈ V ) ) |
12 |
1
|
oi0 |
⊢ ( ¬ ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐹 = ∅ ) |
13 |
|
0ex |
⊢ ∅ ∈ V |
14 |
12 13
|
eqeltrdi |
⊢ ( ¬ ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐹 ∈ V ) |
15 |
11 14
|
pm2.61d1 |
⊢ ( 𝐴 ∈ 𝑉 → 𝐹 ∈ V ) |