Metamath Proof Explorer


Theorem oion

Description: The order type of the well-order R on A is an ordinal. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 23-May-2015)

Ref Expression
Hypothesis oicl.1 𝐹 = OrdIso ( 𝑅 , 𝐴 )
Assertion oion ( 𝐴𝑉 → dom 𝐹 ∈ On )

Proof

Step Hyp Ref Expression
1 oicl.1 𝐹 = OrdIso ( 𝑅 , 𝐴 )
2 1 oicl Ord dom 𝐹
3 1 oiexg ( 𝐴𝑉𝐹 ∈ V )
4 dmexg ( 𝐹 ∈ V → dom 𝐹 ∈ V )
5 elong ( dom 𝐹 ∈ V → ( dom 𝐹 ∈ On ↔ Ord dom 𝐹 ) )
6 3 4 5 3syl ( 𝐴𝑉 → ( dom 𝐹 ∈ On ↔ Ord dom 𝐹 ) )
7 2 6 mpbiri ( 𝐴𝑉 → dom 𝐹 ∈ On )