Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinal isomorphism, Hartogs's theorem
oion
Metamath Proof Explorer
Description: The order type of the well-order R on A is an ordinal.
(Contributed by Stefan O'Rear , 11-Feb-2015) (Revised by Mario
Carneiro , 23-May-2015)
Ref
Expression
Hypothesis
oicl.1
⊢ 𝐹 = OrdIso ( 𝑅 , 𝐴 )
Assertion
oion
⊢ ( 𝐴 ∈ 𝑉 → dom 𝐹 ∈ On )
Proof
Step
Hyp
Ref
Expression
1
oicl.1
⊢ 𝐹 = OrdIso ( 𝑅 , 𝐴 )
2
1
oicl
⊢ Ord dom 𝐹
3
1
oiexg
⊢ ( 𝐴 ∈ 𝑉 → 𝐹 ∈ V )
4
dmexg
⊢ ( 𝐹 ∈ V → dom 𝐹 ∈ V )
5
elong
⊢ ( dom 𝐹 ∈ V → ( dom 𝐹 ∈ On ↔ Ord dom 𝐹 ) )
6
3 4 5
3syl
⊢ ( 𝐴 ∈ 𝑉 → ( dom 𝐹 ∈ On ↔ Ord dom 𝐹 ) )
7
2 6
mpbiri
⊢ ( 𝐴 ∈ 𝑉 → dom 𝐹 ∈ On )