Metamath Proof Explorer


Theorem olc

Description: Introduction of a disjunct. Axiom *1.3 of WhiteheadRussell p. 96. (Contributed by NM, 30-Aug-1993)

Ref Expression
Assertion olc ( 𝜑 → ( 𝜓𝜑 ) )

Proof

Step Hyp Ref Expression
1 ax-1 ( 𝜑 → ( ¬ 𝜓𝜑 ) )
2 1 orrd ( 𝜑 → ( 𝜓𝜑 ) )