Metamath Proof Explorer


Theorem olci

Description: Deduction introducing a disjunct. (Contributed by NM, 19-Jan-2008) (Proof shortened by Wolf Lammen, 14-Nov-2012)

Ref Expression
Hypothesis orci.1 𝜑
Assertion olci ( 𝜓𝜑 )

Proof

Step Hyp Ref Expression
1 orci.1 𝜑
2 1 a1i ( ¬ 𝜓𝜑 )
3 2 orri ( 𝜓𝜑 )