| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnon |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) |
| 2 |
|
oldval |
⊢ ( 𝐴 ∈ On → ( O ‘ 𝐴 ) = ∪ ( M “ 𝐴 ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ω → ( O ‘ 𝐴 ) = ∪ ( M “ 𝐴 ) ) |
| 4 |
|
madef |
⊢ M : On ⟶ 𝒫 No |
| 5 |
|
ffun |
⊢ ( M : On ⟶ 𝒫 No → Fun M ) |
| 6 |
4 5
|
ax-mp |
⊢ Fun M |
| 7 |
|
nnfi |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) |
| 8 |
|
imafi |
⊢ ( ( Fun M ∧ 𝐴 ∈ Fin ) → ( M “ 𝐴 ) ∈ Fin ) |
| 9 |
6 7 8
|
sylancr |
⊢ ( 𝐴 ∈ ω → ( M “ 𝐴 ) ∈ Fin ) |
| 10 |
|
elnn |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω ) → 𝑥 ∈ ω ) |
| 11 |
10
|
ancoms |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ω ) |
| 12 |
|
madefi |
⊢ ( 𝑥 ∈ ω → ( M ‘ 𝑥 ) ∈ Fin ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ 𝐴 ) → ( M ‘ 𝑥 ) ∈ Fin ) |
| 14 |
13
|
ralrimiva |
⊢ ( 𝐴 ∈ ω → ∀ 𝑥 ∈ 𝐴 ( M ‘ 𝑥 ) ∈ Fin ) |
| 15 |
|
onss |
⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) |
| 16 |
1 15
|
syl |
⊢ ( 𝐴 ∈ ω → 𝐴 ⊆ On ) |
| 17 |
4
|
fdmi |
⊢ dom M = On |
| 18 |
16 17
|
sseqtrrdi |
⊢ ( 𝐴 ∈ ω → 𝐴 ⊆ dom M ) |
| 19 |
|
funimass4 |
⊢ ( ( Fun M ∧ 𝐴 ⊆ dom M ) → ( ( M “ 𝐴 ) ⊆ Fin ↔ ∀ 𝑥 ∈ 𝐴 ( M ‘ 𝑥 ) ∈ Fin ) ) |
| 20 |
6 18 19
|
sylancr |
⊢ ( 𝐴 ∈ ω → ( ( M “ 𝐴 ) ⊆ Fin ↔ ∀ 𝑥 ∈ 𝐴 ( M ‘ 𝑥 ) ∈ Fin ) ) |
| 21 |
14 20
|
mpbird |
⊢ ( 𝐴 ∈ ω → ( M “ 𝐴 ) ⊆ Fin ) |
| 22 |
|
unifi |
⊢ ( ( ( M “ 𝐴 ) ∈ Fin ∧ ( M “ 𝐴 ) ⊆ Fin ) → ∪ ( M “ 𝐴 ) ∈ Fin ) |
| 23 |
9 21 22
|
syl2anc |
⊢ ( 𝐴 ∈ ω → ∪ ( M “ 𝐴 ) ∈ Fin ) |
| 24 |
3 23
|
eqeltrd |
⊢ ( 𝐴 ∈ ω → ( O ‘ 𝐴 ) ∈ Fin ) |