Step |
Hyp |
Ref |
Expression |
1 |
|
oldmm1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
oldmm1.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
oldmm1.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
oldmm1.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
5 |
|
olop |
⊢ ( 𝐾 ∈ OL → 𝐾 ∈ OP ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
7 |
|
simp3 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
8 |
1 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
9 |
6 7 8
|
syl2anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
10 |
1 2 3 4
|
oldmm1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) |
11 |
9 10
|
syld3an3 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) |
12 |
1 4
|
opococ |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
13 |
6 7 12
|
syl2anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
14 |
13
|
oveq2d |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∨ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) |
15 |
11 14
|
eqtrd |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑋 ∧ ( ⊥ ‘ 𝑌 ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) |