Metamath Proof Explorer


Theorem olj02

Description: An ortholattice element joined with zero equals itself. (Contributed by NM, 28-Jan-2012)

Ref Expression
Hypotheses olj0.b 𝐵 = ( Base ‘ 𝐾 )
olj0.j = ( join ‘ 𝐾 )
olj0.z 0 = ( 0. ‘ 𝐾 )
Assertion olj02 ( ( 𝐾 ∈ OL ∧ 𝑋𝐵 ) → ( 0 𝑋 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 olj0.b 𝐵 = ( Base ‘ 𝐾 )
2 olj0.j = ( join ‘ 𝐾 )
3 olj0.z 0 = ( 0. ‘ 𝐾 )
4 ollat ( 𝐾 ∈ OL → 𝐾 ∈ Lat )
5 4 adantr ( ( 𝐾 ∈ OL ∧ 𝑋𝐵 ) → 𝐾 ∈ Lat )
6 olop ( 𝐾 ∈ OL → 𝐾 ∈ OP )
7 1 3 op0cl ( 𝐾 ∈ OP → 0𝐵 )
8 6 7 syl ( 𝐾 ∈ OL → 0𝐵 )
9 8 adantr ( ( 𝐾 ∈ OL ∧ 𝑋𝐵 ) → 0𝐵 )
10 simpr ( ( 𝐾 ∈ OL ∧ 𝑋𝐵 ) → 𝑋𝐵 )
11 1 2 latjcom ( ( 𝐾 ∈ Lat ∧ 0𝐵𝑋𝐵 ) → ( 0 𝑋 ) = ( 𝑋 0 ) )
12 5 9 10 11 syl3anc ( ( 𝐾 ∈ OL ∧ 𝑋𝐵 ) → ( 0 𝑋 ) = ( 𝑋 0 ) )
13 1 2 3 olj01 ( ( 𝐾 ∈ OL ∧ 𝑋𝐵 ) → ( 𝑋 0 ) = 𝑋 )
14 12 13 eqtrd ( ( 𝐾 ∈ OL ∧ 𝑋𝐵 ) → ( 0 𝑋 ) = 𝑋 )