Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Ortholattices and orthomodular lattices
ollat
Next ⟩
olop
Metamath Proof Explorer
Ascii
Structured
Theorem
ollat
Description:
An ortholattice is a lattice.
(Contributed by
NM
, 18-Sep-2011)
Ref
Expression
Assertion
ollat
⊢
(
𝐾
∈ OL →
𝐾
∈ Lat )
Proof
Step
Hyp
Ref
Expression
1
isolat
⊢
(
𝐾
∈ OL ↔ (
𝐾
∈ Lat ∧
𝐾
∈ OP ) )
2
1
simplbi
⊢
(
𝐾
∈ OL →
𝐾
∈ Lat )